Robust and real-time lane detection filter based on adaptive neuro-fuzzy inference system

被引:6
|
作者
Kucukmanisa, Ayhan [1 ]
Akbulut, Orhan [2 ]
Urhan, Oguzhan [1 ]
机构
[1] Kocaeli Univ, Dept Elect & Telecommun Engn, Kocaeli, Turkey
[2] Kocaeli Univ, Dept Comp Engn, Kocaeli, Turkey
关键词
DETECTION ALGORITHM;
D O I
10.1049/iet-ipr.2018.6236
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lane departure warning system used in vehicles has recently become very popular and is about to become a vital component in advanced driver assistance systems. The performance of this system is directly related to lane detection accuracy. In this study, a fuzzy inference system-based filter for robust lane detection is proposed. The proposed filter has three input parameters which are as follows: the difference between a pixel and its left and right neighbours at a certain distance along the horizontal direction and standard deviation of the pixels between the left and right neighbours. The parameters of the proposed fuzzy filter are determined in a learning phase by taking challenging scenarios such as varying lighting conditions, shadows, and road cracks. Experimental results reveal that the proposed method outperforms existing lane detection filters when integrated into a lane detection system. Since the proposed approach is computationally lightweight, it is suitable for real-time devices and applications.
引用
收藏
页码:1181 / 1190
页数:10
相关论文
共 50 条
  • [31] State of charge estimation based on adaptive neuro-fuzzy inference system
    Guan Jiansheng
    Xu Wenjin
    Zhang Abu
    ICCSE'2006: Proceedings of the First International Conference on Computer Science & Education: ADVANCED COMPUTER TECHNOLOGY, NEW EDUCATION, 2006, : 840 - 843
  • [32] Diagnosing Breast Cancer Based on the Adaptive Neuro-Fuzzy Inference System
    Chidambaram, S.
    Ganesh, S. Sankar
    Karthick, Alagar
    Jayagopal, Prabhu
    Balachander, Bhuvaneswari
    Manoharan, S.
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [33] A damage assessment model based on adaptive neuro-fuzzy inference system
    Wu, Zheng-Long
    Zhao, Zhong-Shi
    Binggong Xuebao/Acta Armamentarii, 2012, 33 (11): : 1352 - 1357
  • [34] Adaptive neuro-fuzzy inference system for modelling and control
    Amaral, TGB
    Crisóstomo, MM
    Pires, VF
    2002 FIRST INTERNATIONAL IEEE SYMPOSIUM INTELLIGENT SYSTEMS, VOL 1, PROCEEDINGS, 2002, : 67 - 72
  • [35] Adaptive Neuro-Fuzzy Inference System for Financial Evaluation
    Orhei, Dragomir
    VISION 2020: SUSTAINABLE GROWTH, ECONOMIC DEVELOPMENT, AND GLOBAL COMPETITIVENESS, VOLS 1-5, 2014, : 241 - 245
  • [36] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Ulker Guner Bacanli
    Mahmut Firat
    Fatih Dikbas
    Stochastic Environmental Research and Risk Assessment, 2009, 23 : 1143 - 1154
  • [37] Adaptive Neuro-Fuzzy Inference System for Classification of Texts
    Kamil, Aida-zade
    Rustamov, Samir
    Clements, Mark A.
    Mustafayev, Elshan
    RECENT DEVELOPMENTS AND THE NEW DIRECTION IN SOFT-COMPUTING FOUNDATIONS AND APPLICATIONS, 2018, 361 : 63 - 70
  • [38] Hysteresis Modeling with Adaptive Neuro-Fuzzy Inference System
    Mordjaoui, M.
    Chabane, M.
    Boudjema, B.
    Daira, R.
    FERROELECTRICS, 2008, 372 : 54 - 65
  • [39] Adaptive Real-time Learning-based Neuro-Fuzzy Control of Robot Manipulators
    Baselizadeh, Adel
    Saplacan, Diana
    Torresen, Jim
    2021 THE 9TH INTERNATIONAL CONFERENCE ON CONTROL, MECHATRONICS AND AUTOMATION (ICCMA 2021), 2021, : 20 - 26
  • [40] A novel gait analysis system based on adaptive neuro-fuzzy inference system
    Su, Xu
    Xu, Zhou
    Yi-Ning, Sun
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (02) : 1265 - 1269