Wavelets Comparison at Hurst Exponent Estimation

被引:0
|
作者
Schurrer, Jaroslav [1 ]
机构
[1] Czech Tech Univ, Masaryk Inst Adv Studies, Kolejni 2637-2a, Prague, Czech Republic
关键词
Hurst exponent; Wavelet Transformation; signal power spectrum;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper we present Discrete Wavelet Transformation based on Hurst exponent estimation and compare different wavelets used in the process. Self-similar behavior mostly associated with fractals can be found in broad range of areas. For self-affine processes the local properties are reflected in the global ones and the Hurst exponent is related to fractal dimension, where fractal dimension is a measure of the roughness of a surface. For usually non-stationary time series the Hurst exponent is a measure of long term memory of time series. From former works mentioned in references we know that Discrete Wavelet Transformation provides better accuracy compared to Continuous Wavelet Transformation and that it outperforms methods based on the Fourier spectral analysis and R/S analysis.
引用
收藏
页码:757 / 761
页数:5
相关论文
共 50 条
  • [41] The sampling properties of Hurst exponent estimates
    Ellis, Craig
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 375 (01) : 159 - 173
  • [42] Introducing Hurst exponent in pair trading
    Ramos-Requena, J. P.
    Trinidad-Segovia, J. E.
    Sanchez-Granero, M. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 488 : 39 - 45
  • [43] Comparison of wavelets for multiresolution motion estimation
    Zan, JW
    Ahmad, MO
    Swamy, MNS
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2006, 16 (03) : 439 - 446
  • [44] Ljapunov exponents, hyperchaos and Hurst exponent
    Steeb, WH
    Andrieu, EC
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2005, 60 (04): : 252 - 254
  • [45] TTA, a new approach to estimate Hurst exponent with less estimation error and computational time
    Lotfalinezhad, Hamze
    Maleki, Ali
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 553
  • [46] Hurst exponent estimation of self-affine time series using quantile graphs
    Campanharo, Andriana S. L. O.
    Ramos, Fernando M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 444 : 43 - 48
  • [47] Estimation of statistics properties of rough surface profiles from the Hurst exponent of speckle patterns
    Camargo, A. L. P.
    Dias, M. R. B.
    Lemos, M. R.
    Mello, M. M.
    da Silva, L.
    dos Santos, P. A. M.
    Huguenin, J. A. O.
    APPLIED OPTICS, 2020, 59 (20) : 5957 - 5966
  • [48] Estimating Hurst exponent with wavelet packet
    Wang, Zhiguo
    Guo, Dechun
    Li, Xi
    Fei, Yuanchun
    7TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED INDUSTRIAL DESIGN & CONCEPTUAL DESIGN, 2006, : 105 - +
  • [49] MULTIVARIATE HURST EXPONENT ESTIMATION IN FMRI. APPLICATION TO BRAIN DECODING OF PERCEPTUAL LEARNING
    Pelle, H.
    Ciuciu, Ph.
    Rahim, M.
    Dohmatob, E.
    Abry, P.
    van Wassenhove, V.
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 996 - 1000
  • [50] A note on scaled variance ratio estimation of the Hurst exponent with application to agricultural commodity prices
    Turvey, Calum G.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 377 (01) : 155 - 165