Multipartite unextendible entangled basis

被引:25
|
作者
Guo, Yu [1 ]
Jia, Yanping [1 ]
Li, Xiulan [1 ]
机构
[1] Shanxi Datong Univ, Sch Math & Comp Sci, Datong 037009, Peoples R China
基金
中国国家自然科学基金;
关键词
Unextendible entangled basis; Schmidt number; Multipartite quantum system; PRODUCT BASES;
D O I
10.1007/s11128-015-1058-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The unextendible entangled basis with any arbitrarily given Schmidt number k (UEBk) in C-d1 circle times C-d2 is proposed in Guo and Wu (Phys Rev A 90: 054303, 2014), 1 < k <= min{d(1), d(2)}, which is a set of orthonormal entangled states with Schmidt number k in a d(1) circle times d(2) system consisting of fewer than d(1)d(2) vectors which have no additional entangled vectors with Schmidt number k in the complementary space. In this paper, we extend it to multipartite case, and a general way of constructing (m + 1)-partite UEBk from m-partite UEBk is proposed (m >= 2). Consequently, we show that there are infinitely many UEBks in C-d1 circle times C-d2 circle times...circle times C-dN with any dimensions and any N >= 3.
引用
收藏
页码:3553 / 3568
页数:16
相关论文
共 50 条
  • [1] Multipartite unextendible entangled basis
    Yu Guo
    Yanping Jia
    Xiulan Li
    Quantum Information Processing, 2015, 14 : 3553 - 3568
  • [2] Constructing the unextendible maximally entangled basis from the maximally entangled basis
    Guo, Yu
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [3] Unextendible Maximally Entangled Bases and Mutually Unbiased Bases in Multipartite Systems
    Zhang, Ya-Jing
    Zhao, Hui
    Jing, Naihuan
    Fei, Shao-Ming
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (11) : 3425 - 3430
  • [4] Unextendible Maximally Entangled Bases and Mutually Unbiased Bases in Multipartite Systems
    Ya-Jing Zhang
    Hui Zhao
    Naihuan Jing
    Shao-Ming Fei
    International Journal of Theoretical Physics, 2017, 56 : 3425 - 3430
  • [5] LOCALLY UNEXTENDIBLE NON-MAXIMALLY ENTANGLED BASIS
    Chakrabarty, Indranil
    Agrawal, Pankaj
    Pati, Auun K.
    QUANTUM INFORMATION & COMPUTATION, 2012, 12 (3-4) : 271 - 282
  • [6] A NOTE ON LOCALLY UNEXTENDIBLE NON-MAXIMALLY ENTANGLED BASIS
    Chen, Bin
    Nizamidin, Halqem
    Fei, Shao-Ming
    QUANTUM INFORMATION & COMPUTATION, 2013, 13 (11-12) : 1077 - 1080
  • [7] Constructions of unextendible entangled bases
    Shi, Fei
    Zhang, Xiande
    Guo, Yu
    QUANTUM INFORMATION PROCESSING, 2019, 18 (10)
  • [8] Unextendible maximally entangled bases
    Bravyi, Sergei
    Smolin, John A.
    PHYSICAL REVIEW A, 2011, 84 (04):
  • [9] 4x4 unextendible product basis and genuinely entangled space
    Wang, Kai
    Chen, Lin
    Zhao, Lijun
    Guo, Yumin
    QUANTUM INFORMATION PROCESSING, 2019, 18 (07)
  • [10] Constructions of unextendible entangled bases
    Fei Shi
    Xiande Zhang
    Yu Guo
    Quantum Information Processing, 2019, 18