A NOTE ON LOCALLY UNEXTENDIBLE NON-MAXIMALLY ENTANGLED BASIS

被引:0
|
作者
Chen, Bin [1 ]
Nizamidin, Halqem [1 ]
Fei, Shao-Ming [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
关键词
Unextendible basis; Non-maximally entangled state; LUNMEB; BOUND ENTANGLEMENT; PRODUCT BASES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the locally unextendible non-maximally entangled basis (LUNMEB) in H-d circle times H-d. We point out that there exists an error in the proof of the main result of LUNMEB [Quant. Inf. Comput. 12, 0271(2012)], which claims that there are at most d orthogonal vectors in a LUNMEB, constructed from a given non-maximally entangled state. We show that both the proof and the main result are not correct in general. We present a counter example for d = 4, in which five orthogonal vectors from a specific non-maximally entangled state are constructed. Besides, we completely solve the problem of LUNMEB for the case of d = 2.
引用
收藏
页码:1077 / 1080
页数:4
相关论文
共 50 条
  • [1] LOCALLY UNEXTENDIBLE NON-MAXIMALLY ENTANGLED BASIS
    Chakrabarty, Indranil
    Agrawal, Pankaj
    Pati, Auun K.
    QUANTUM INFORMATION & COMPUTATION, 2012, 12 (3-4) : 271 - 282
  • [2] Constructing the unextendible maximally entangled basis from the maximally entangled basis
    Guo, Yu
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [3] A Note on Mutually Unbiased Unextendible Maximally Entangled Bases in
    Nizamidin, Halqem
    Ma, Teng
    Fei, Shao-Ming
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (01) : 326 - 333
  • [4] A note on the construction of unextendible maximally entangled bases in Cd ? Cd'
    Wang, Chenghong
    Wang, Kun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (10):
  • [5] Unextendible maximally entangled bases
    Bravyi, Sergei
    Smolin, John A.
    PHYSICAL REVIEW A, 2011, 84 (04):
  • [6] Teleportation via maximally and non-maximally entangled mixed states
    Adhikari, S.
    Majumdar, A.S.
    Roy, S.
    Ghosh, B.
    Nayak, N.
    Quantum Information and Computation, 2010, 10 (5-6): : 398 - 419
  • [7] TELEPORTATION VIA MAXIMALLY AND NON-MAXIMALLY ENTANGLED MIXED STATES
    Adhikari, S.
    Majumdar, A. S.
    Roy, S.
    Ghosh, B.
    Nayak, N.
    QUANTUM INFORMATION & COMPUTATION, 2010, 10 (5-6) : 398 - 419
  • [8] Cutting a Wire with Non-Maximally Entangled States
    Bechtold, Marvin
    Batten, Johanna
    Leyrnann, Frank
    Mandl, Alexander
    2024 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, IPDPSW 2024, 2024, : 1136 - 1145
  • [10] Efficiency of the non-maximally entangled quantum Otto engine
    Sukamto, Heru
    Yuwana, Lila
    Purwanto, Agus
    Muniandy, Sithi, V
    PHYSICA SCRIPTA, 2024, 99 (04)