On the decoding of convolutional codes on an unknown channel

被引:1
|
作者
Lapidoth, A [1 ]
Ziv, J
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] ETH Zentrum, Swiss Fed Inst Technol, CH-8092 Zurich, Switzerland
[3] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
关键词
computational cutoff rate; convolutional codes; error exponent; finite-state channels; intersymbol interference; nonlinear intersymbol interference; sequential decoding; stack algorithm; trellis codes; universal decoding; Viterbi decoding;
D O I
10.1109/18.796372
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An algorithm is proposed for universal decoding of convolutional/trellis codes employed over unknown channels. On discrete memoryless channels and at rates below the channel's computational cutoff rate (for a uniform input distribution), the algorithm achieves an asymptotic complexity-performance tradeoff similar to the tradeoff achieved by the Viterbi algorithm, but with the benefit that the algorithm's implementation does not require knowledge of the channel law. The algorithm is also applicable to channels with memory, and in particular to intersymbol interference (ISI) channels, to channels with nonlinear ISI, and even to general finite-state channels.
引用
收藏
页码:2321 / 2332
页数:12
相关论文
共 50 条
  • [21] Encoding and decoding of quantum convolutional codes
    Xing Li-Juan
    Li Zhuo
    Bai Bao-Ming
    Wang Xin-Mei
    ACTA PHYSICA SINICA, 2008, 57 (08) : 4695 - 4699
  • [22] Convolutional codes with low decoding complexity
    Tatung Company, Taipei 104, Taiwan
    不详
    Harbin Gongye Daxue Xuebao, 2008, SUPPL. (118-121):
  • [23] Differential trellis decoding of convolutional codes
    Fossorier, MPC
    Lin, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) : 1046 - 1053
  • [24] Stochastic Decoding for LDPC Convolutional Codes
    Lee, Xin-Ru
    Chen, Chih-Lung
    Chang, Hsie-Chia
    Lee, Chen-Yi
    2012 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 2012), 2012, : 2621 - 2624
  • [25] Encoding and decoding of quantum convolutional codes
    State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China
    Wuli Xuebao, 2008, 8 (4695-4699):
  • [26] Creeper: An algorithm for decoding convolutional codes
    Imtawil, V
    ICCS 2002: 8TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2002, : 332 - 336
  • [27] Optimal syndrome decoding of convolutional codes
    Khmelkov A.N.
    Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 2010, 69 (03): : 237 - 245
  • [28] Iterative joint channel decoding of correlated sources employing serially concatenated convolutional codes
    Daneshgaran, F
    Laddomada, M
    Mondin, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (07) : 2721 - 2731
  • [29] Optimal Construction for Decoding 2D Convolutional Codes over an Erasure Channel
    Pinto, Raquel
    Spreafico, Marcos
    Vela, Carlos
    AXIOMS, 2024, 13 (03)
  • [30] Decoding of convolutional codes on a sliding window during signal propagation in a multipath communications channel
    Shpylka A.A.
    Zhuk S.Ya.
    Radioelectronics and Communications Systems, 2010, 53 (9) : 497 - 501