On instantaneous control for a nonlinear parabolic boundary control problem

被引:0
|
作者
Wachsmuth, D [1 ]
机构
[1] Tech Univ Berlin, Fak Math & Naturwissen 2, D-10523 Berlin, Germany
关键词
optimal boundary control; parabolic equation; control constraints; instantaneous control; receding horizon;
D O I
10.1081/NFA-120034123
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method of instantaneous control type is considered for a nonlinear parabolic boundary control problem with box constraints on the control. It is shown that the method exhibits fixed points. In numerical examples, convergence towards a fixed point state occurs, which might be far away from the desired state. Consequently, a new hybrid method is suggested, which behaves essentially better than the standard method.
引用
收藏
页码:151 / 181
页数:31
相关论文
共 50 条
  • [21] Local stabilization of coupled nonlinear parabolic equations by boundary control
    Si, Yuanchao
    Xie, Chengkang
    Zhen, Zhiyuan
    Zhao, Ailiang
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2018, 355 (13): : 5592 - 5612
  • [22] OPTIMAL PROBLEMS FOR NONLINEAR PARABOLIC BOUNDARY CONTROL-SYSTEMS
    FATTORINI, HO
    MURPHY, T
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (06) : 1577 - 1596
  • [23] Dissipativity and the Lur'e problem for parabolic boundary control systems
    Pandolfi, L
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (06) : 2061 - 2081
  • [24] NUMERICAL TREATMENT OF A PARABOLIC BOUNDARY-VALUE CONTROL PROBLEM
    GLASHOFF, K
    GUSTAFSON, SA
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1976, 19 (04) : 645 - 663
  • [25] APPROXIMATION OF PARABOLIC BOUNDARY CONTROL PROBLEM USING LINEAR METHOD
    KOHLER, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1976, 56 (03): : T351 - T353
  • [26] Receding Horizon Control for Nonlinear Parabolic Partial Differential Equations with Boundary Control Inputs
    Hashimoto, Tomoaki
    Yoshioka, Yusuke
    Ohtsuka, Toshiyuki
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 6920 - 6925
  • [27] An Instantaneous Semi-Lagrangian Approach for Boundary Control of a Melting Problem
    Mezzan, Youness
    Tber, Moulay Hicham
    APPLICATIONS OF MATHEMATICS, 2021, 66 (05) : 725 - 744
  • [28] An instantaneous semi-Lagrangian approach for boundary control of a melting problem
    Youness Mezzan
    Moulay Hicham Tber
    Applications of Mathematics, 2021, 66 : 725 - 744
  • [29] Optimal control problem for an anisotropic parabolic problem in a domain with very rough boundary
    De Maio U.
    Faella L.
    Perugia C.
    Ricerche di Matematica, 2014, 63 (2) : 307 - 328
  • [30] An Optimal Control Problem of a Coupled Nonlinear Parabolic Population System
    Chao-hua Jia Department of Applied Mathematics
    ActaMathematicaeApplicataeSinica, 2007, (03) : 377 - 388