Ballistic random walker

被引:7
|
作者
MolinasMata, P
Munoz, MA
Martinez, DO
Barabasi, AL
机构
[1] IBM CORP, THOMAS J WATSON RES CTR, YORKTOWN HTS, NY 10598 USA
[2] LOS ALAMOS NATL LAB, DIV THEORET, LOS ALAMOS, NM 87545 USA
[3] UNIV NOTRE DAME, DEPT PHYS, NOTRE DAME, IN 46556 USA
关键词
D O I
10.1103/PhysRevE.54.968
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce and investigate the scaling properties of a random walker that moves ballistically on a two-dimensional square lattice. The walker is scattered (changes direction randomly) every time it reaches a previously unvisited site, and follows ballistic trajectories between two scattering events. The asymptotic properties of the density of unvisited sites and the diffusion exponent can be calculated using a mean-field theory. The obtained predictions are in good agreement with the results of extensive numerical simulations. In particular, we show that this random walk is subdiffusive.
引用
收藏
页码:968 / 971
页数:4
相关论文
共 50 条
  • [41] SEARCHING FOR A ONE-DIMENSIONAL RANDOM WALKER
    MCCABE, BJ
    JOURNAL OF APPLIED PROBABILITY, 1974, 11 (01) : 86 - 93
  • [42] Metastability and Spinodal Points for a Random Walker on a Triangle
    Peter F. Arndt
    Thomas Heinzel
    Journal of Statistical Physics, 1998, 92 : 837 - 864
  • [43] Hyperspectral Anomaly Detection With Morphological Random Walker
    Huang, Zhihong
    Zhang, Keren
    Xiao, Jian
    Chen, Junxingxu
    Zhu, Guangming
    Wu, Sheng
    IEEE ACCESS, 2021, 9 : 102114 - 102124
  • [44] Ballistic regime for random walks in random environment with unbounded jumps and Knudsen billiards
    Comets, Francis
    Popov, Serguei
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (03): : 721 - 744
  • [45] Ballistic random walks in random environment as rough paths: convergence and area anomaly
    Lopusanschi, Olga
    Orenshtein, Tal
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (01): : 945 - 962
  • [46] SCALING LIMITS FOR SUB-BALLISTIC BIASED RANDOM WALKS IN RANDOM CONDUCTANCES
    Fribergh, Alexander
    Kious, Daniel
    ANNALS OF PROBABILITY, 2018, 46 (02): : 605 - 686
  • [47] An invariance principle for a class of non-ballistic random walks in random environment
    Erich Baur
    Probability Theory and Related Fields, 2016, 166 : 463 - 514
  • [48] An invariance principle for a class of non-ballistic random walks in random environment
    Baur, Erich
    PROBABILITY THEORY AND RELATED FIELDS, 2016, 166 (1-2) : 463 - 514
  • [49] Maximum likelihood estimator consistency for a ballistic random walk in a parametric random environment
    Comets, Francis
    Falconnet, Mikael
    Loukianov, Oleg
    Loukianova, Dasha
    Matias, Catherine
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) : 268 - 288
  • [50] Ballistic behavior for random Schrodinger operators on the Bethe strip
    Klein, Abel
    Sadel, Christian
    JOURNAL OF SPECTRAL THEORY, 2011, 1 (04) : 409 - 442