Cell Segmentation by Image-to-Image Translation using Multiple Different Discriminators

被引:0
|
作者
Kato, Sota [1 ]
Hotta, Kazuhiro [1 ]
机构
[1] Meijo Univ, Tempaku Ku, 1-501 Shiogamaguchi, Nagoya, Aichi 4688502, Japan
关键词
Image to Image Translation; Semantic Segmentation; Cell Segmentation;
D O I
10.5220/0009170103300335
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents a cell image segmentation method by improving the pix2pix. Pix2pix improves the accuracy by competing a generator and a discriminator The relationship of generator and discriminator is likened as follows. A generator is a fraudster who creates a fake image to fool the discriminator. A discriminator is a police officer who checks the fake image created by the generator. If we increase the number of police officers and different police officers are used, they have different roles and various viewpoints are used to check the fake image. In experiments, we evaluate our method on segmentation problem of cell images. We compared our method with conventional pix2pix using one discriminator. As a result, the accuracy will be improved. Thus, we propose to use multiple different discriminators to improve the segmentation accuracy of pix2pix. We confirmed that our proposed method outperformed conventional pix2pix and pix2pix using multiple same discriminators.
引用
收藏
页码:330 / 335
页数:6
相关论文
共 50 条
  • [41] Unsupervised many-to-many image-to-image translation across multiple domains
    Lin, Ye
    Fu, Keren
    Ling, Shenggui
    Cheng, Peng
    IET IMAGE PROCESSING, 2021, 15 (11) : 2412 - 2423
  • [42] Random Reconstructed Unpaired Image-to-Image Translation
    Zhang, Xiaoqin
    Fan, Chenxiang
    Xiao, Zhiheng
    Zhao, Li
    Chen, Huiling
    Chang, Xiaojun
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 3144 - 3154
  • [43] Research on Image-to-Image Translation with Capsule Network
    Ye, Jian
    Chang, Qing
    Jia, Xiaotian
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: THEORETICAL NEURAL COMPUTATION, PT I, 2019, 11727 : 141 - 151
  • [44] Edge Sensitive Unsupervised Image-to-Image Translation
    Akkaya, Ibrahim Batuhan
    Halici, Ugur
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [45] Zero-shot Image-to-Image Translation
    Parmar, Gaurav
    Singh, Krishna Kumar
    Zhang, Richard
    Li, Yijun
    Lu, Jingwan
    Zhu, Jun-Yan
    PROCEEDINGS OF SIGGRAPH 2023 CONFERENCE PAPERS, SIGGRAPH 2023, 2023,
  • [46] Rethinking the Truly Unsupervised Image-to-Image Translation
    Baek, Kyungjune
    Choi, Yunjey
    Uh, Youngjung
    Yoo, Jaejun
    Shim, Hyunjung
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 14134 - 14143
  • [47] Panoptic-aware Image-to-Image Translation
    Zhang, Liyun
    Ratsamee, Photchara
    Wang, Bowen
    Luo, Zhaojie
    Uranishi, Yuki
    Higashida, Manabu
    Takemura, Haruo
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 259 - 268
  • [48] Unpaired image-to-image translation of structural damage
    Varghese, Subin
    Hoskere, Vedhus
    ADVANCED ENGINEERING INFORMATICS, 2023, 56
  • [49] Equivariant Adversarial Network for Image-to-image Translation
    Zareapoor, Masoumeh
    Yang, Jie
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (02)
  • [50] Avoiding Shortcuts in Unpaired Image-to-Image Translation
    Fontanini, Tomaso
    Botti, Filippo
    Bertozzi, Massimo
    Prati, Andrea
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT I, 2022, 13231 : 463 - 475