On the well-posedness for NLS in Hs

被引:10
|
作者
Fang, Daoyuan [1 ]
Han, Zheng [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
关键词
Schrodinger equation; Initial value problem; Local well-posedness; Fractional order Sobolev spaces; Besov spaces; SCHRODINGER-EQUATIONS;
D O I
10.1016/j.jfa.2013.01.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we prove the local well-posedness of the Cauchy problem for the nonlinear Schrodinger equation i partial derivative(t)u + Delta u = c vertical bar u vertical bar(sigma) in H-s (R-N), with 0 < sigma < 4/(N - 2s) and 1 < s < min{N/2, 2}. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1438 / 1455
页数:18
相关论文
共 50 条
  • [21] Global well-posedness and critical norm concentration for inhomogeneous biharmonic NLS
    Cardoso, Mykael
    Guzman, Carlos M.
    Pastor, Ademir
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (01): : 1 - 29
  • [22] GLOBAL WELL-POSEDNESS OF NLS-KDV SYSTEMS FOR PERIODIC FUNCTIONS
    Matheus, Carlos
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [23] Global well-posedness and critical norm concentration for inhomogeneous biharmonic NLS
    Mykael Cardoso
    Carlos M. Guzmàn
    Ademir Pastor
    Monatshefte für Mathematik, 2022, 198 : 1 - 29
  • [24] On the global well-posedness of focusing energy-critical inhomogeneous NLS
    Yonggeun Cho
    Seokchang Hong
    Kiyeon Lee
    Journal of Evolution Equations, 2020, 20 : 1349 - 1380
  • [25] Unconditional well-posedness for semilinear Schrodinger and wave equations in Hs
    Furioli, G
    Planchon, F
    Terraneo, E
    HARMONIC ANALYSIS AT MOUNT HOLYOKE, 2003, 320 : 147 - 156
  • [26] Hs-global well-posedness for semilinear wave equations
    Miao, CX
    Zhang, B
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 283 (02) : 645 - 666
  • [27] Well-Posedness
    Veselic, K.
    DAMPED OSCILLATIONS OF LINEAR SYSTEMS: A MATHEMATICAL INTRODUCTION, 2011, 2023 : 143 - 143
  • [28] SMALL DATA GLOBAL WELL-POSEDNESS FOR THE INHOMOGENEOUS BIHARMONIC NLS IN SOBOLEV SPACES
    An, Jinmyong
    Ryu, Pyongjo
    Kim, Jinmyong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, : 2789 - 2802
  • [29] Global Well-Posedness and Scattering for the Defocusing H~s-Critical NLS
    Jian XIE
    Daoyuan FANG
    Chinese Annals of Mathematics(Series B), 2013, 34 (06) : 801 - 842
  • [30] Strichartz estimates and global well-posedness of the cubic NLS on T2
    Herr, Sebastian
    Kwak, Beomjong
    FORUM OF MATHEMATICS PI, 2024, 12