3D Fredholm integral equations for scattering by dielectric structures

被引:2
|
作者
Samokhin, A. B. [1 ]
Samokhina, A. S.
机构
[1] Moscow Technol Univ, Moscow, Russia
关键词
D O I
10.1134/S0012266116090093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider 3D singular integral equations that describe problems of interaction of an electromagnetic wave with 3D dielectric structures. By using the theory of singular integral equations, we reduce these equations to Fredholm integral equations of the second kind.
引用
收藏
页码:1178 / 1187
页数:10
相关论文
共 50 条
  • [21] Solving scattering from 3D composite conducting and dielectric object by surface integral equation method
    Yang, X. H.
    Hu, J.
    Yao, H. Y.
    Nie, Z. P.
    2005 ASIA-PACIFIC MICROWAVE CONFERENCE PROCEEDINGS, VOLS 1-5, 2005, : 2224 - 2227
  • [22] Acoustic Scattering of 3D Complex Systems Having Random Rough Surfaces by Scalar Integral Equations
    Antonio Guel-Tapia, Juan
    Villa-Villa, Francisco
    Mendoza-Suarez, Alberto
    Perez-Aguilar, Hector
    ARCHIVES OF ACOUSTICS, 2016, 41 (03) : 461 - 472
  • [23] FREDHOLM SOLUTIONS OF PARTIAL INTEGRAL EQUATIONS
    SALAM, A
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1953, 49 (02): : 213 - 217
  • [24] NUMERICAL SOLUTION OF FREDHOLM INTEGRAL EQUATIONS
    ATKINSON, KE
    SIAM REVIEW, 1966, 8 (04) : 558 - &
  • [25] Fredholm formulas for linear integral equations
    Zabreiko, PP
    Marchenko, VV
    DIFFERENTIAL EQUATIONS, 1999, 35 (09) : 1176 - 1183
  • [26] Integral Equations for 3-D Scattering: Finite Strip on a Substrate
    Marx, Egon
    PIERS 2009 BEIJING: PROGESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS I AND II, 2009, : 1326 - 1329
  • [27] Eigenvalues of a system of Fredholm integral equations
    Agarwal, RP
    O'Regan, D
    Wong, PJY
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 39 (9-10) : 1113 - 1150
  • [28] A REPRESENTATION FOR SOLUTION OF FREDHOLM INTEGRAL EQUATIONS
    KAGIWADA, HH
    KALABA, RE
    SCHUMITZ.A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 23 (01) : 37 - &
  • [29] Optimal control of fredholm integral equations
    Keyanpour, M.
    Akbarian, T.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2011, 5 (03): : 514 - 524
  • [30] FAMILY OF FREDHOLM INTEGRAL-EQUATIONS
    RUEHR, OG
    SIAM REVIEW, 1973, 15 (01) : 220 - 221