Mechanical and fracture properties of ultra-high performance geopolymer concrete: Effects of steel fiber and silica fume

被引:245
|
作者
Liu, Yiwei [1 ]
Shi, Caijun [1 ]
Zhang, Zuhua [1 ]
Li, Ning [1 ]
Shi, Da [1 ]
机构
[1] Hunan Univ, Coll Civil Engn, Key Lab Green & Adv Civil Engn Mat & Applicat Tec, Changsha 410082, Hunan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Ultra-high performance geopolymer concrete; Steel fiber; Silica fume; Mechanical properties; Fracture properties; ALKALI-ACTIVATED SLAG; FLY ASH BLENDS; REINFORCED CONCRETE; TENSILE-STRENGTH; DURABILITY; BEHAVIOR; CEMENT; MODULUS; WORKABILITY; CARBONATION;
D O I
10.1016/j.cemconcomp.2020.103665
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study investigates the effects of steel fiber and silica fume on the mechanical and fracture properties of ultra-high performance geopolymer concrete (UHPGC). Four volume fractions of steel fiber (0%, 1%, 2% and 3%) and four contents of silica fume by the mass of total binders (5%, 10%, 20% and 30%) were used. The mechanical and fracture properties evaluated include the compressive, splitting tensile and ultimate flexural strengths, modulus of elasticity, flexural behavior, fracture energy and stress intensity factor. In addition, the correlations among the compressive and splitting tensile strengths, and compressive strength and elastic modulus were studied. The results indicated the increase of steel fiber dosage resulted in the decrease of the workability, but the continuous improvement of mechanical and fracture performance of UHPGC. The empirical equations for predicting elastic modulus of conventional ultra-high performance concrete overestimated the elastic modulus of UHPGC, however some prediction formulas for the splitting tensile strength of PC-based concretes could be applied for UHPGC. Silica fume had a complicated influence on workability and hardened properties of UHPGC, which is strongly dependent on its amount. The inclusion of 10% silica fume induced the increase of the flowability, but the sharp degradation of the mechanical performance, while the specimens with 20% and 30% silica fume possessed the superior mechanical characteristic to that with 5% silica fume. The steel fiber dosage could be decreased without sacrificing the mechanical and fracture performance of UHPGC, via the increase of silica fume content.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Role of silica fume on hydration and strength development of ultra-high performance concrete
    Xi, Juyu
    Liu, Jianzhong
    Yang, Kai
    Zhang, Shihao
    Han, Fangyu
    Sha, Jianfang
    Zheng, Xin
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 338
  • [32] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Choi, Donguk
    Hong, Kyungchan
    Ochirbud, Munkhtuvshin
    Meiramov, Didar
    Sukontaskuul, Piti
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2023, 17 (01)
  • [33] Investigation of mechanical properties and shrinkage of ultra-high performance concrete: Influence of steel fiber content and shape
    Wu, Zemei
    Shi, Caijun
    Khayat, Kamal Henri
    COMPOSITES PART B-ENGINEERING, 2019, 174
  • [34] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Donguk Choi
    Kyungchan Hong
    Munkhtuvshin Ochirbud
    Didar Meiramov
    Piti Sukontaskuul
    International Journal of Concrete Structures and Materials, 17
  • [35] RETRACTION: Influence of polypropylene fibres and silica fume on the mechanical and fracture properties of ultra-high-performance geopolymer concrete (Retraction of Vol 283, art no 122753, 2021)
    Karimipour, Arash
    de Brito, Jorge
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 340
  • [36] Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC)
    Habel, Katrin
    Viviani, Marco
    Denarie, Emmanuel
    Bruehwiler, Eugen
    CEMENT AND CONCRETE RESEARCH, 2006, 36 (07) : 1362 - 1370
  • [37] Size Effect of Mechanical Properties of Hybrid Fiber Ultra-high Performance Concrete
    Wang L.
    Chi Y.
    Xu L.
    Liu S.
    Yin C.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2022, 25 (08): : 781 - 788
  • [38] Improved mechanical and thermal properties of sustainable ultra-high performance geopolymer concrete with cellulose nanofibres
    Xie, Yuekai
    Wang, Chenman
    Guo, Yingying
    Cui, Hanwen
    Xue, Jianfeng
    JOURNAL OF BUILDING ENGINEERING, 2025, 102
  • [39] Effects of silica fume and steel fibers on some mechanical properties of high-strength fiber-reinforced concrete
    Eren, Ö
    Marar, K
    Çelik, T
    JOURNAL OF TESTING AND EVALUATION, 1999, 27 (06) : 380 - 387
  • [40] Influence of polypropylene and steel fibers on the mechanical properties of ultra-high-performance fiber-reinforced geopolymer concrete
    Aisheh, Yazan Issa Abu
    Atrushi, Dawood Sulaiman
    Akeed, Mahmoud H.
    Qaidi, Shaker
    Tayeh, Bassam A.
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17