Exact Solutions and Conservation Laws of a (2+1)-Dimensional Nonlinear KP-BBM Equation

被引:15
|
作者
Adem, Khadijo Rashid [1 ]
Khalique, Chaudry Masood [1 ]
机构
[1] North West Univ, Dept Math Sci, Int Inst Symmetry Anal & Math Modelling, ZA-2735 Mmabatho, South Africa
关键词
DIFFERENTIAL-EQUATIONS; COMPACT;
D O I
10.1155/2013/791863
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the two-dimensional nonlinear Kadomtsov-Petviashivilli-Benjamin-Bona-Mahony (KP-BBM) equation. This equation is the Benjamin-Bona-Mahony equation formulated in the KP sense. We first obtain exact solutions of this equation using the Lie group analysis and the simplest equation method. The solutions obtained are solitary waves. In addition, the conservation laws for the KP-BBM equation are constructed by using the multiplier method.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Lie symmetries, exact solutions and conservation laws of (2+1)-dimensional time fractional cubic Schrödinger equation
    Yu, Jicheng
    Feng, Yuqiang
    JOURNAL OF APPLIED ANALYSIS, 2024,
  • [43] On the symbolic computation of exact solutions and conservation laws of a generalized (2+1)-dimensional Calogaro-Bogoyavlenskii-Schiff equation
    Moroke, M. C.
    Muatjetjeja, B.
    Adem, A. R.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2021, 24 (06) : 1607 - 1615
  • [44] Lump solutions to a (2+1)-dimensional extended KP equation
    Manukure, Solomon
    Zhou, Yuan
    Ma, Wen-Xiu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (07) : 2414 - 2419
  • [45] Symmetry reduction, exact solutions, and conservation laws of (2+1)-dimensional Burgers Korteweg-de Vries equation
    Dong Zhong-Zhou
    Liu Xi-Qiang
    Bai Cheng-Lin
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 46 (01) : 15 - 20
  • [46] Exact solutions of a (2+1)-dimensional nonlinear Klein-Gordon equation
    Güngör, F
    PHYSICA SCRIPTA, 2000, 61 (04): : 385 - 390
  • [47] Exact Solutions of the (2+1)-Dimensional Stochastic Chiral Nonlinear Schrodinger Equation
    Albosaily, Sahar
    Mohammed, Wael W.
    Aiyashi, Mohammed A.
    Abdelrahman, Mahmoud A. E.
    SYMMETRY-BASEL, 2020, 12 (11): : 1 - 12
  • [48] Lie symmetries and conservation laws for a generalized (2+1)-dimensional nonlinear evolution equation
    Saez, S.
    de la Rosa, R.
    Recio, E.
    Garrido, T. M.
    Bruzon, M. S.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (04) : 775 - 798
  • [49] Lie symmetries and conservation laws for a generalized (2+1)-dimensional nonlinear evolution equation
    S. Sáez
    R. de la Rosa
    E. Recio
    T. M. Garrido
    M. S. Bruzón
    Journal of Mathematical Chemistry, 2020, 58 : 775 - 798
  • [50] Symmetry and conservation laws of the (2+1)-dimensional nonlinear Schrodinger-type equation
    Serikbayev, Nurzhan
    Saparbekova, Akbota
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (10)