On the Hard Lefschetz property of stringy Hodge numbers

被引:2
|
作者
Schepers, Jan [1 ]
机构
[1] Katholieke Univ Leuven, Dept Wiskunde, B-3001 Louvain, Belgium
关键词
Algebraic geometry; Stringy invariants; COHOMOLOGY;
D O I
10.1016/j.jalgebra.2008.10.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For projective varieties with a certain class of 'mild' isolated singularities and for projective threefolds with arbitrary Gorenstein canonical singularities, we show that the stringy Hodge numbers satisfy the Hard Lefschetz property (i.e. h(st)(p.q) <= h(st)(p+1,q+1) for p + q <= d - 2, where d is the dimension of the variety). This result fits nicely with a 6-dimensional counterexarnple of Mustata and Payne for the Hard Lefschetz property for stringy Hodge numbers in general. We also give Such an example, ours is a hypersurface singularity. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:394 / 403
页数:10
相关论文
共 50 条
  • [41] Ehrhart polynomials and stringy Betti numbers
    Mircea Mustaţa
    Sam Payne
    Mathematische Annalen, 2005, 333 : 787 - 795
  • [42] THE STRENGTH OF THE WEAK LEFSCHETZ PROPERTY
    Migliore, Juan
    Zanello, Fabrizio
    ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (04) : 1417 - 1433
  • [43] BERNOULLI MOMENTS OF SPECTRAL NUMBERS AND HODGE NUMBERS
    Brelivet, Thomas
    Hertling, Claus
    JOURNAL OF SINGULARITIES, 2020, 20 : 205 - 231
  • [44] Maximal components of Noether–Lefschetz locus for Beilinson–Hodge cycles
    Masanori Asakura
    Shuji Saito
    Mathematische Annalen, 2008, 341 : 169 - 199
  • [45] Arithmetic Lefschetz and Hodge theorems for varieties allowing for cell decomposition
    Künnemann, K
    Maillot, V
    REGULATORS IN ANALYSIS, GEOMETRY AND NUMBER THEORY, 2000, 171 : 197 - 205
  • [46] The Lefschetz property for families of curves
    Kollar, Janos
    RATIONAL POINTS, RATIONAL CURVES, AND ENTIRE HOLOMORPHIC CURVES ON PROJECTIVE VARIETIES, 2015, 654 : 143 - 154
  • [47] Mixed Lefschetz Theorems and Hodge-Riemann Bilinear Relations
    Cattani, Eduardo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
  • [48] INTERPOLATION AND THE WEAK LEFSCHETZ PROPERTY
    Nagel, Uwe
    Trok, Bill
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (12) : 8849 - 8870
  • [49] The jumping phenomenon of Hodge numbers
    Ye, Xuanming
    PACIFIC JOURNAL OF MATHEMATICS, 2008, 235 (02) : 379 - 398
  • [50] Hodge-Lyubeznik numbers
    Lopez, Ricardo Garcia
    Sabbah, Claude
    COMPTES RENDUS MATHEMATIQUE, 2025, 363