On the Hard Lefschetz property of stringy Hodge numbers

被引:2
|
作者
Schepers, Jan [1 ]
机构
[1] Katholieke Univ Leuven, Dept Wiskunde, B-3001 Louvain, Belgium
关键词
Algebraic geometry; Stringy invariants; COHOMOLOGY;
D O I
10.1016/j.jalgebra.2008.10.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For projective varieties with a certain class of 'mild' isolated singularities and for projective threefolds with arbitrary Gorenstein canonical singularities, we show that the stringy Hodge numbers satisfy the Hard Lefschetz property (i.e. h(st)(p.q) <= h(st)(p+1,q+1) for p + q <= d - 2, where d is the dimension of the variety). This result fits nicely with a 6-dimensional counterexarnple of Mustata and Payne for the Hard Lefschetz property for stringy Hodge numbers in general. We also give Such an example, ours is a hypersurface singularity. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:394 / 403
页数:10
相关论文
共 50 条