Spatio-Temporal Expanding Distance Asymptotic Framework for Locally Stationary Processes

被引:2
|
作者
Chu, Tingjin [1 ]
Liu, Jialuo [2 ]
Zhu, Jun [3 ,4 ]
Wang, Haonan [2 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
[2] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[3] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Entomol, Madison, WI 53706 USA
关键词
Covariance functions; Nonstationary processes; Random fields; Spatial statistics; Spatio-temporal statistics; MAXIMUM-LIKELIHOOD-ESTIMATION; COVARIANCE; SEPARABILITY; MODELS; REGRESSION;
D O I
10.1007/s13171-020-00213-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Spatio-temporal data indexed by sampling locations and sampling time points are encountered in many scientific disciplines such as climatology, environmental sciences, and public health. Here, we propose a novel spatio-temporal expanding distance (STED) asymptotic framework for studying the properties of statistical inference for nonstationary spatio-temporal models. In particular, to model spatio-temporal dependence, we develop a new class of locally stationary spatio-temporal covariance functions. The STED asymptotic framework has a fixed spatio-temporal domain for spatio-temporal processes that are globally nonstationary in a rescaled fixed domain and locally stationary in a distance expanding domain. The utility of STED is illustrated by establishing the asymptotic properties of the maximum likelihood estimation for a general class of spatio-temporal covariance functions. A simulation study suggests sound finite-sample properties and the method is applied to a sea-surface temperature dataset.
引用
收藏
页码:689 / 713
页数:25
相关论文
共 50 条
  • [21] Spatio-temporal processes of knowledge creation
    Hautala, Johanna
    Jauhiainen, Jussi S.
    RESEARCH POLICY, 2014, 43 (04) : 655 - 668
  • [22] Asymptotic models and inference for extremes of spatio-temporal data
    Turkman, Kamil Feridun
    Turkman, M. A. Amaral
    Pereira, J. M.
    EXTREMES, 2010, 13 (04) : 375 - 397
  • [23] Classes of nonseparable, spatio-temporal stationary covariance functions
    Cressie, N
    Huang, HC
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (448) : 1330 - 1340
  • [24] Asymptotic models and inference for extremes of spatio-temporal data
    Kamil Feridun Turkman
    M. A. Amaral Turkman
    J. M. Pereira
    Extremes, 2010, 13 : 375 - 397
  • [25] Random Generation of a Locally Consistent Spatio-Temporal Graph
    Leborgne, Aurelie
    Kirandjiska, Marija
    Le Ber, Florence
    GRAPH-BASED REPRESENTATION AND REASONING (ICCS 2021), 2021, 12879 : 155 - 169
  • [26] STIFF: A forecasting framework for spatio-temporal data
    Li, ZG
    Dunham, MH
    Xia, YQ
    MINING MULTIMEDIA AND COMPLEX DATA, 2003, 2797 : 183 - 198
  • [27] Towards a formal framework for spatio-temporal granularities
    Belussi, Alberto
    Combi, Carlo
    Pozzani, Gabriele
    TIME 2008: 15TH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING, PROCEEDINGS, 2008, : 49 - 53
  • [28] A framework for discovering spatio-temporal cohesive networks
    Yoo, Jin Soung
    Hwang, Joengmin
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2008, 5012 : 1056 - +
  • [29] EasyST: A Simple Framework for Spatio-Temporal Prediction
    Tang, Jiabin
    Wei, Wei
    Xia, Lianghao
    Huang, Chao
    PROCEEDINGS OF THE 33RD ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2024, 2024, : 2220 - 2229
  • [30] Spatio-temporal point processes: Methods and applications
    Diggle, Peter J.
    STATISTICAL METHODS FOR SPATIO-TEMPORAL SYSTEMS, 2007, 107 : 1 - 45