On the ternary Goldbach problem with primes in independent arithmetic progressions

被引:5
|
作者
Halupczok, K. [1 ]
机构
[1] Univ Freiburg, Inst Math, D-79104 Freiburg, Germany
关键词
ternary Goldbach problem with primes in residue classes; Hardy-Littlewood circle method; applications of the large sieve;
D O I
10.1007/s10474-008-7068-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for every fixed A > 0 and theta > 0 there is a theta = theta (A, theta) > 0 Nvith the following property. Let n be odd and sufficiently large, and let Q(1) = Q(2) := n(1/2) (logn)(-theta) and Q(3) := (log n)(theta). Then for all q(3) <= Q(3), all reduced residues a(3) mod q(3), almost all q(2) <= Q(2), all admissible residues a(2) mod q(2), almost all q(1) <= Q(1) and all admissible residues a(1) mod q(1), there exists a representation n = p(1) + p(2) + p(3) with primes p(i) equivalent to a(i) (q(i)), i = 1, 2, 3.
引用
收藏
页码:315 / 349
页数:35
相关论文
共 50 条
  • [21] The ternary Goldbach problem with a prime and two isolated primes
    Helmut Maier
    Michael Th. Rassias
    Proceedings of the Steklov Institute of Mathematics, 2017, 296 : 183 - 197
  • [22] The ternary Goldbach problem with a prime and two isolated primes
    Maier, Helmut
    Rassias, Michael Th.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 296 (01) : 183 - 197
  • [23] THE GOLDBACH CONJECTURE WITH SUMMANDS IN ARITHMETIC PROGRESSIONS
    Salmensuu, Juho
    QUARTERLY JOURNAL OF MATHEMATICS, 2022, 73 (04): : 1375 - 1401
  • [24] On Goldbach's conjecture in arithmetic progressions
    Bauer, C
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2001, 37 (1-2) : 1 - 20
  • [25] Products of primes in arithmetic progressions
    Matomaki, Kaisa
    Teravainen, Joni
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (808): : 193 - 240
  • [26] Product of primes in arithmetic progressions
    Ramare, Olivier
    Srivastav, Priyamvad
    Serra, Oriol
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (04) : 747 - 766
  • [27] Primes in short arithmetic progressions
    Puchta, JC
    ACTA ARITHMETICA, 2003, 106 (02) : 143 - 149
  • [28] On the Ternary Goldbach Problem with Primes pi Such That pi + 2 are Almost-Primes
    T. P. Peneva
    Acta Mathematica Hungarica, 2000, 86 : 305 - 318
  • [29] PRIMES IN SHORT ARITHMETIC PROGRESSIONS
    FOGELS, EK
    DOKLADY AKADEMII NAUK SSSR, 1960, 133 (05): : 1038 - 1040
  • [30] Chen primes in arithmetic progressions
    Lewulis, Pawel
    ACTA ARITHMETICA, 2018, 182 (04) : 301 - 310