On the ternary Goldbach problem with primes in independent arithmetic progressions

被引:5
|
作者
Halupczok, K. [1 ]
机构
[1] Univ Freiburg, Inst Math, D-79104 Freiburg, Germany
关键词
ternary Goldbach problem with primes in residue classes; Hardy-Littlewood circle method; applications of the large sieve;
D O I
10.1007/s10474-008-7068-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for every fixed A > 0 and theta > 0 there is a theta = theta (A, theta) > 0 Nvith the following property. Let n be odd and sufficiently large, and let Q(1) = Q(2) := n(1/2) (logn)(-theta) and Q(3) := (log n)(theta). Then for all q(3) <= Q(3), all reduced residues a(3) mod q(3), almost all q(2) <= Q(2), all admissible residues a(2) mod q(2), almost all q(1) <= Q(1) and all admissible residues a(1) mod q(1), there exists a representation n = p(1) + p(2) + p(3) with primes p(i) equivalent to a(i) (q(i)), i = 1, 2, 3.
引用
收藏
页码:315 / 349
页数:35
相关论文
共 50 条