Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields

被引:0
|
作者
Fontanella, L. [1 ]
Ippoliti, L. [1 ]
Martin, R. J.
Trivisonno, S. [1 ]
机构
[1] Univ G DAnnunzio, Dept Quantitat Methods & Econ Theory, I-65127 Pescara, Italy
关键词
Gaussian Markov random fields; Geostatistics; Interpolation; Inverse correlations; Kriging; Spatio-temporal processes;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers interpolation on a lattice of covariance-based Gaussian Random Field models (Geostatistics models) using Gaussian Markov Random Fields (GMRFs) (conditional autoregression models). Two methods for estimating the GMRF parameters are considered. One generalises maximum likelihood for complete data, and the other ensures a better correspondence between fitted and theoretical correlations for higher lags. The methods can be used both for spatial and spatio-temporal data. Some different cross-validation methods for model choice are compared. The predictive ability of the GMRF is demonstrated by a simulation study, and an example using a real image is considered.
引用
收藏
页码:63 / 79
页数:17
相关论文
共 50 条
  • [31] Texture segmentation using Gaussian Markov Random Fields and LEGION
    Cesmeli, E
    Wang, DL
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 1529 - 1534
  • [32] CLASSIFICATION OF TEXTURES USING GAUSSIAN MARKOV RANDOM-FIELDS
    CHELLAPPA, R
    CHATTERJEE, S
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (04): : 959 - 963
  • [33] Fast estimation of spatially dependent temporal vegetation trends using Gaussian Markov random fields
    Bolin, David
    Lindstroem, Johan
    Eklundh, Lars
    Lindgren, Finn
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (08) : 2885 - 2896
  • [34] ASYMPTOTICALLY EFFICIENT PARAMETER ESTIMATION IN HIDDEN MARKOV SPATIO-TEMPORAL RANDOM FIELDS
    Lai, Tze Leung
    Lim, Johan
    STATISTICA SINICA, 2015, 25 (01) : 403 - 421
  • [35] Efficient Bayesian spatial prediction with mobile sensor networks using Gaussian Markov random fields
    Xu, Yunfei
    Choi, Jongeun
    Dass, Sarat
    Maiti, Tapabrata
    AUTOMATICA, 2013, 49 (12) : 3520 - 3530
  • [36] Efficient Bayesian Spatial Prediction with Mobile Sensor Networks Using Gaussian Markov Random Fields
    Xu, Yunfei
    Choi, Jongeun
    Dass, Sarat
    Maiti, Tapabrata
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 2171 - 2176
  • [37] Fully Bayesian Simultaneous Localization and Spatial Prediction using Gaussian Markov Random Fields (GMRFs)
    Jadaliha, Mahdi
    Choi, Jongeun
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 4592 - 4597
  • [38] Conditional-mean least-squares fitting of Gaussian Markov random fields to Gaussian fields
    Cressie, Noel
    Verzelen, Nicolas
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (05) : 2794 - 2807
  • [39] Infrared Texture Simulation Using Gaussian-Markov Random Fields
    Xiao-peng Shao
    Xiao-ming Zhao
    Jun Xu
    Jian-qi Zhang
    International Journal of Infrared and Millimeter Waves, 2004, 25 : 1699 - 1710
  • [40] Infrared texture simulation using Gaussian-Markov random fields
    Shao, XP
    Zhao, XM
    Xu, J
    Zhang, JQ
    INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2004, 25 (11): : 1699 - 1710