A new neural network-based prediction model for Newmark's sliding displacements

被引:13
|
作者
Gade, Maheshreddy [1 ]
Nayek, Partha Sarathi [1 ]
Dhanya, J. [2 ]
机构
[1] Indian Inst Technol Mandi, Sch Engn, Kamand, India
[2] Indian Inst Technol Madras, Dept Civil Engn, Chennai, Tamil Nadu, India
关键词
Slope displacement; Prediction model; Artificial neural network; Landslide hazard; GROUND-MOTION; PGV;
D O I
10.1007/s10064-020-01923-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The present work aims at developing a new neural network-based prediction model for Newmark's sliding block displacements. The model is developed to predict slope displacement for given earthquake magnitude, focal mechanism, rupture distance, average shear wave velocity of the top 30 m of soil, and critical acceleration of the slope. The network architecture constitutes three layers (only one hidden layer) with nodes per layer 5-5-1. Thus, the network comprises of 36 unknown coefficients. The prediction model utilizes a total of 13,707 data points. Furthermore, inter- and intra-event residuals are evaluated using a mixed-effects algorithm and found to be unbiased, having respective standard deviation accounting to 0.837 and 1.645. The developed slope displacement prediction model is observed to capture the known displacement features, and the patterns are in agreement with the available relations in literature. The applicability of the new model in the estimation of slope displacements hazard is also demonstrated for a representative site in the Himalayan region.
引用
收藏
页码:385 / 397
页数:13
相关论文
共 50 条
  • [21] Neural network prediction model of fluid displacements in porous media
    Kuwait Univ, Safat, Kuwait
    Comput Chem Eng, Suppl pt A (S515-S520):
  • [22] A neural network prediction model of fluid displacements in porous media
    Elkamel, A
    Karkoub, M
    Gharbi, R
    COMPUTERS & CHEMICAL ENGINEERING, 1996, 20 : S515 - S520
  • [23] Neural network-based sliding mode control of electronic throttle
    Baric, M
    Petrovic, I
    Peric, N
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2005, 18 (08) : 951 - 961
  • [24] Neural Network-based Blocking Prediction for Dynamic Network Slicing
    Movva, Nitin Datta
    Ishigaki, Genya
    2024 33RD INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS, ICCCN 2024, 2024,
  • [25] Neural network-based model for prediction of permanent deformation of unbound granular materials
    Ali Alnedawi
    Riyadh Al-Ameri
    Kali Prasad Nepal
    Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11 (06) : 1231 - 1242
  • [26] An artificial neural network-based model for roping prediction in aluminum alloy sheet
    Hu, Yuanzhe
    Zhou, Guowei
    Yuan, Xini
    Li, Dayong
    Cao, Lingyong
    Zhang, Wen
    Wu, Peidong
    ACTA MATERIALIA, 2023, 245
  • [27] BP neural network-based sports performance prediction model applied research
    Wang, Jian, 1600, Journal of Chemical and Pharmaceutical Research, 3/668 Malviya Nagar, Jaipur, Rajasthan, India (06):
  • [28] Day-ahead Wind Speed Prediction by a Neural Network-based Model
    Daraeepour, Ali
    Echeverri, Dalia Patino
    2014 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2014,
  • [29] A neural network-based shape prediction model for membrane mirrors in space telescopes
    Chandra, Aman
    Walker, Christopher K.
    Sirsi, Siddhartha
    2021 IEEE AEROSPACE CONFERENCE (AEROCONF 2021), 2021,
  • [30] An Artificial Neural Network-based Hairiness Prediction Model for Worsted Wool Yarns
    Khan, Zulfiqar
    Lim, Allan E. K.
    Wang, Lijing
    Wang, Xungai
    Beltran, Rafael
    TEXTILE RESEARCH JOURNAL, 2009, 79 (08) : 714 - 720