Fuzzy adaptive rules in the forecasting of short memory time series

被引:0
|
作者
Fong, LY [1 ]
Szeto, KY [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy rule extraction is performed on an artificial time series with memory generated with a given covariance matrix using the inverse whitening transformation. The covariance matrix is defined with a definite range of memory using the short memory form of exponential decay. Vector quantization is performed on this real-valued time series to convert it into a digitized sequence of finite number of classes. The sequence is then divided into two subsets: training and testing sets, and the problem of forecasting the time series given the past data corresponds to the construction of a set of prediction rules that will make a classification on the class of the data today given the past sequence. We then construct an adaptive classifier using simple genetic algorithm with fixed selection ratio and construct a set of hierarchical rules for the classification of patterns. Since fuzziness exists for data close to the boundary between two classes, we modify our classifier by introducing in the triangular membership function associated with each class of data. The fuzzy region between neighboring classes is the overlapped region of these triangular functions and is parameterized by the degree of fuzziness, f. After training, the best rule from the genetic algorithm is measured for a given degree of fuzziness. Two distinct phases in the degree of fuzziness, separated by a critical value at f=0.18 for a short memory time series with decay constant of 5 days are found and understood as the result of two distinct best rules in two different phases. Application of this fuzzy adaptive classifier to real financial time series is discussed.
引用
收藏
页码:598 / 603
页数:6
相关论文
共 50 条
  • [21] Probabilistic Forecasting With Fuzzy Time Series
    de Lima Silva, Petronio Candido
    Sadaei, Hossein Javedani
    Ballini, Rosangela
    Guimaraes, Frederico Gadelha
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (08) : 1771 - 1784
  • [22] Interval Forecasting with Fuzzy Time Series
    Silva, Petronio C. L.
    Sadaei, Hossein Javedani
    Guimaraes, Frederico Gadelha
    PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [23] Forecasting Short Seasonal Time Series
    Jiang Xiangrong
    Chen Chung
    DATA PROCESSING AND QUANTITATIVE ECONOMY MODELING, 2010, : 426 - +
  • [24] Forecasting financial short time series
    Alonso, Andres M.
    de Blas, Clara Simon
    Garcia, Ana Elizabeth
    Ciprian, Mauricio
    Correas, Teresa
    Maestre, Roberto
    Peinado, Luis
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2018, 11 (01) : 42 - 57
  • [25] Intuitionistic fuzzy time series functions approach for time series forecasting
    Eren Bas
    Ufuk Yolcu
    Erol Egrioglu
    Granular Computing, 2021, 6 : 619 - 629
  • [26] Intuitionistic fuzzy time series functions approach for time series forecasting
    Bas, Eren
    Yolcu, Ufuk
    Egrioglu, Erol
    GRANULAR COMPUTING, 2021, 6 (03) : 619 - 629
  • [27] An efficient time series forecasting model based on fuzzy time series
    Singh, Pritpal
    Borah, Bhogeswar
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (10) : 2443 - 2457
  • [28] Adaptive hybrid fuzzy time series forecasting technique based on particle swarm optimization
    Goyal, Gunjan
    Bisht, Dinesh C. S.
    GRANULAR COMPUTING, 2023, 8 (02) : 373 - 390
  • [29] Adaptive hybrid fuzzy time series forecasting technique based on particle swarm optimization
    Gunjan Goyal
    Dinesh C. S. Bisht
    Granular Computing, 2023, 8 : 373 - 390
  • [30] Mining fuzzy rules for time series classification
    Au, WH
    Chan, KCC
    2004 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, PROCEEDINGS, 2004, : 239 - 244