ADHERENCE TO BLOOD PRESSURE LOWERING MEDICATIONS AND THE RISK OF HOSPITALIZED FALL-RELATED INJURIES AFTER STROKE: A REAL-WORLD STUDY USING LINKED REGISTRY DATA

被引:0
|
作者
Dalli, L. [1 ]
Olaiya, M. [1 ]
Andrew, N. [2 ]
Cadilhac, D. [1 ,3 ]
Thrift, A. [1 ]
Nelson, M. [4 ]
Gall, S. [4 ]
Kilkenny, M. [1 ,3 ]
机构
[1] Monash Univ, Monash Hlth, Sch Clin Sci, Dept Med, Clayton, Vic, Australia
[2] Monash Univ, Cent Clin Sch, Peninsula Clin Sch, Frankston, Australia
[3] Florey Inst Neurosci & Mental Hlth, Publ Hlth Div, Stroke Theme, Heidelberg, Vic, Australia
[4] Univ Tasmania, Menzies Inst Med Res, Hobart, Tas, Australia
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
O195
引用
收藏
页码:92 / 92
页数:1
相关论文
共 24 条
  • [21] Increased Risk of Stroke Due to Non-adherence and Non-persistence with Direct Oral Anticoagulants (DOACs): Real-World Analyses Using a Nested Case-Control Study from The Netherlands, Italy and Germany
    Holthuis, Emily
    Smits, Elisabeth
    Spentzouris, George
    Beier, Dominik
    Enders, Dirk
    Gini, Rosa
    Bartolini, Claudia
    Mazzaglia, Giampiero
    Penning-van Beest, Fernie
    Herings, Ron
    DRUGS-REAL WORLD OUTCOMES, 2022, 9 (04) : 597 - 607
  • [22] Use of machine learning to identify patients at risk of sub-optimal adherence: study based on real-world data from 10,929 children using a connected auto-injector device
    Spataru, Amalia
    van Dommelen, Paula
    Arnaud, Lilian
    Le Masne, Quentin
    Quarteroni, Silvia
    Koledova, Ekaterina
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [23] Use of machine learning to identify patients at risk of sub-optimal adherence: study based on real-world data from 10,929 children using a connected auto-injector device
    Amalia Spataru
    Paula van Dommelen
    Lilian Arnaud
    Quentin Le Masne
    Silvia Quarteroni
    Ekaterina Koledova
    BMC Medical Informatics and Decision Making, 22
  • [24] CFTR-MODULATORS (CFTRM) IMPACT ON REAL-WORLD HEALTHCARE RESOURCE UTILISATION (HCRU) IN CYSTIC FIBROSIS (CF) IN WALES: RETROSPECTIVE, OBSERVATIONAL, DATABASE STUDY USING LINKED DATA FROM THE UK CF REGISTRY (UKCFR) AND SAIL-DATABANK
    Vega-Hernandez, G.
    Duran, A.
    Akbari, A.
    Griffiths, R.
    Wohling, H.
    VALUE IN HEALTH, 2023, 26 (06) : S92 - S92