Non supercyclic subsets of linear isometries on Banach spaces of analytic functions

被引:1
|
作者
Moradi, Abbas [1 ]
Hedayatian, Karim [1 ]
Robati, Bahram Khani [1 ]
Ansari, Mohammad [1 ]
机构
[1] Shiraz Univ, Dept Math, Coll Sci, Shiraz 7146713565, Intersection Ad, Iran
关键词
supercyclicity; hypercyclic operator; semigroup; isometry; OPERATORS; ORBITS;
D O I
10.1007/s10587-015-0184-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Banach space of analytic functions on the open unit disk and I" a subset of linear isometries on X. Sufficient conditions are given for non-supercyclicity of I". In particular, we show that the semigroup of linear isometries on the spaces S (p) (p > 1), the little Bloch space, and the group of surjective linear isometries on the big Bloch space are not supercyclic. Also, we observe that the groups of all surjective linear isometries on the Hardy space H (p) or the Bergman space L (a) (p) (1 < p < a, p not equal 2) are not supercyclic.
引用
收藏
页码:389 / 397
页数:9
相关论文
共 50 条
  • [1] Non supercyclic subsets of linear isometries on Banach spaces of analytic functions
    Abbas Moradi
    Karim Hedayatian
    Bahram Khani Robati
    Mohammad Ansari
    Czechoslovak Mathematical Journal, 2015, 65 : 389 - 397
  • [2] Isometries of some Banach spaces of analytic functions
    William Hornor
    James E. Jamison
    Integral Equations and Operator Theory, 2001, 41 : 410 - 425
  • [3] Isometries of some Banach spaces of analytic functions
    Hornor, W
    Jamison, JE
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 41 (04) : 410 - 425
  • [4] Non-Weakly Supercyclic Classes of Weighted Composition Operators on Banach Spaces of Analytic Functions
    Moradi, A.
    Robati, B. Khani
    Hedayatian, K.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2017, 24 (02) : 227 - 241
  • [5] Linear isometries on Banach spaces
    Amiri, S.
    Golbaharan, A.
    Mahyar, H.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
  • [6] Linear isometries on Banach spaces
    S. Amiri
    A. Golbaharan
    H. Mahyar
    Analysis and Mathematical Physics, 2022, 12
  • [7] On linear isometries and ε-isometries between Banach spaces
    Zhou, Yu
    Zhang, Zihou
    Liu, Chunyan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (01) : 754 - 764
  • [8] LINEAR ISOMETRIES OF SOME NORMED SPACES OF ANALYTIC-FUNCTIONS
    NOVINGER, WP
    OBERLIN, DM
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1985, 37 (01): : 62 - 74
  • [9] On Coarse Isometries and Linear Isometries between Banach Spaces
    Sun, Yuqi
    AXIOMS, 2024, 13 (03)
  • [10] ANALYTIC FUNCTIONS IN BANACH SPACES
    BOCHNAK, J
    STUDIA MATHEMATICA, 1970, 35 (03) : 273 - &