Crystallography companion agent for high-throughput materials discovery

被引:53
|
作者
Maffettone, Phillip M. [1 ,2 ]
Banko, Lars [3 ]
Cui, Peng [2 ]
Lysogorskiy, Yury [4 ]
Little, Marc A. [2 ]
Olds, Daniel [1 ]
Ludwig, Alfred [3 ]
Cooper, Andrew, I [2 ]
机构
[1] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[2] Univ Liverpool, Dept Chem & Mat Innovat Factory, Liverpool, Merseyside, England
[3] Ruhr Univ Bochum, Fac Mech Engn, Inst Mat, Bochum, Germany
[4] Ruhr Univ, Interdisciplinary Ctr Adv Mat Simulat ICAMS, Bochum, Germany
来源
NATURE COMPUTATIONAL SCIENCE | 2021年 / 1卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
MOLECULES; SYSTEM;
D O I
10.1038/s43588-021-00059-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The discovery of new structural and functional materials is driven by phase identification, often using X-ray diffraction (XRD). Automation has accelerated the rate of XRD measurements, greatly outpacing XRD analysis techniques that remain manual, time-consuming, error-prone and impossible to scale. With the advent of autonomous robotic scientists or self-driving laboratories, contemporary techniques prohibit the integration of XRD. Here, we describe a computer program for the autonomous characterization of XRD data, driven by artificial intelligence (AI), for the discovery of new materials. Starting from structural databases, we train an ensemble model using a physically accurate synthetic dataset, which outputs probabilistic classifications-rather than absolutes-to overcome the overconfidence in traditional neural networks. This AI agent behaves as a companion to the researcher, improving accuracy and offering substantial time savings. It is demonstrated on a diverse set of organic and inorganic materials characterization challenges. This method is directly applicable to inverse design approaches and robotic discovery systems, and can be immediately considered for other forms of characterization such as spectroscopy and the pair distribution function.
引用
收藏
页码:290 / 297
页数:8
相关论文
共 50 条
  • [11] AFLOW: An automatic framework for high-throughput materials discovery
    Curtarolo, Stefano
    Setyawan, Wahyu
    Hart, Gus L. W.
    Jahnatek, Michal
    Chepulskii, Roman V.
    Taylor, Richard H.
    Wanga, Shidong
    Xue, Junkai
    Yang, Kesong
    Levy, Ohad
    Mehl, Michael J.
    Stokes, Harold T.
    Demchenko, Denis O.
    Morgan, Dane
    COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 : 218 - 226
  • [12] Microfluidic High-Throughput Platforms for Discovery of Novel Materials
    Zhou, Peipei
    He, Jinxu
    Huang, Lu
    Yu, Ziming
    Su, Zhenning
    Shi, Xuetao
    Zhou, Jianhua
    NANOMATERIALS, 2020, 10 (12) : 1 - 17
  • [13] High-throughput crystallography for structural genomics
    Joachimiak, Andrzej
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2009, 19 (05) : 573 - 584
  • [14] Transparent conducting materials discovery using high-throughput computing
    Guillaume Brunin
    Francesco Ricci
    Viet-Anh Ha
    Gian-Marco Rignanese
    Geoffroy Hautier
    npj Computational Materials, 5
  • [15] High-throughput methods for discovery and optimization of porous crystalline materials
    Stock, Norbert
    CHEMIE INGENIEUR TECHNIK, 2010, 82 (07) : 1039 - 1047
  • [16] Machine-learning models for high-throughput materials discovery
    Landrum, GA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U560 - U560
  • [17] High-throughput screening: speeding up porous materials discovery
    Wollmann, Philipp
    Leistner, Matthias
    Stoeck, Ulrich
    Gruenker, Ronny
    Gedrich, Kristina
    Klein, Nicole
    Throl, Oliver
    Graehlert, Wulf
    Senkovska, Irena
    Dreisbach, Frieder
    Kaskel, Stefan
    CHEMICAL COMMUNICATIONS, 2011, 47 (18) : 5151 - 5153
  • [18] Developing a High-Throughput Platform for the Discovery of Sustainable Antibacterial Materials
    Wieczerzak, Krzysztof
    Klimashin, Fedor F.
    Sharma, Amit
    Altenried, Stefanie
    Maniura-Weber, Katharina
    Ren, Qun
    Michler, Johann
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (44) : 60018 - 60026
  • [19] High-throughput computational materials screening and discovery of optoelectronic semiconductors
    Luo, Shulin
    Li, Tianshu
    Wang, Xinjiang
    Faizan, Muhammad
    Zhang, Lijun
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2021, 11 (01)
  • [20] Virtual high-throughput infrastructure for the accelerated discovery of organic materials
    Afzal, M. Atif
    Hachmann, Johannes
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254