TRANSIENT MELT POOL FORMATION IN LASER-POWDER BED FUSION PROCESS

被引:0
|
作者
Rauniyar, Santosh [1 ]
Chou, Kevin [1 ]
机构
[1] Univ Louisville, Dept Ind Engn, Louisville, KY 40292 USA
基金
美国国家科学基金会;
关键词
Melt pool; Transient state; LPBF; Ti-6Al-4V; THIN-WALL STRUCTURES; DESIGN;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Parts are built in a layer-by-layer fashion in the laser powder bed fusion process. Each layer of scan in the parts is defined by a scan strategy that consists of many small patches and scans. The scan length of those multiple scans is not always long enough to have reached a quasi-steady state of the melt pool. The length at which it achieves a steady state is different for different process parameters. The available literature related to the melt pool considers the melt pool has already achieved a steady state, which holds true to a large extent. However, there is always a transient state of melt pool with different characteristics compared to the quasi-steady state. The transient state of the melt pool is particularly significant, for small, features and thin walls. This paper explores the cross-section and width of the melt track in the transient state. Single-tracks are deposited on semi-cylindrical samples with 71-6Al-4V powder particles for three levels of power and speed combinations. The single tracks are built at a certain height from the base plate instead of on the build plate to include the effect of the powder particles. The experiment includes single tracks of four scan lengths i.e. 0.25, 0.5, 1 and 2 mm. Once the parts are built and removed from the build plate, White light interferometer is used to capture the melt track information and data processing is done in Matlab (TM). The results show that the transient length is directly proportional to the laser power and inversely proportional to the scan speed. The highest transient length value is obtained for the highest power of 195 W and lowest scan speed of 50 mm/s.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A Supervised Machine Learning Model for Regression to Predict Melt Pool Formation and Morphology in Laser Powder Bed Fusion
    Baldi, Niccolo
    Giorgetti, Alessandro
    Polidoro, Alessandro
    Palladino, Marco
    Giovannetti, Iacopo
    Arcidiacono, Gabriele
    Citti, Paolo
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [32] MEASUREMENT OF THE MELT POOL LENGTH DURING SINGLE SCAN TRACKS IN A COMMERCIAL LASER POWDER BED FUSION PROCESS
    Heigel, J. C.
    Lane, B. M.
    PROCEEDINGS OF THE ASME 12TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE - 2017, VOL 2, 2017,
  • [33] A Review on Laser Beam Shaping Application in Laser-Powder Bed Fusion
    Bakhtari, Ahmad Reshad
    Sezer, Huseyin Kursad
    Canyurt, Olcay Ersel
    Eren, Ogulcan
    Shah, Mussadiq
    Marimuthu, Sundar
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (14)
  • [34] Deep learning based reconstruction of transient 3D melt pool geometries in laser powder bed fusion from coaxial melt pool images
    Liao, Shuheng
    Xue, Tianju
    Cao, Jian
    MANUFACTURING LETTERS, 2024, 40 : 50 - 53
  • [35] Simultaneous optimization of topology and process parameters for laser-powder bed fusion additive manufacturing
    İstemihan Gökdağ
    Erdem Acar
    Structural and Multidisciplinary Optimization, 2023, 66
  • [36] Multi phenomena melt pool sensor data fusion for enhanced process monitoring of laser powder bed fusion additive manufacturing
    Gaikwad, Aniruddha
    Williams, Richard J.
    de Winton, Harry
    Bevans, Benjamin D.
    Smoqi, Ziyad
    Rao, Prahalada
    Hooper, Paul A.
    MATERIALS & DESIGN, 2022, 221
  • [37] Effect of interlayer temperature on melt-pool morphology in laser powder bed fusion
    Wang, Qian
    Michaleris, Panagiotis
    Ren, Yong
    Dickman, Corey
    Reutzel, Edward
    ADDITIVE MANUFACTURING LETTERS, 2023, 7
  • [38] Validated dimensionless scaling law for melt pool width in laser powder bed fusion
    Yang, Yangyiwei
    Grossmann, Alexander
    Kuehn, Patrick
    Moelleney, Jan
    Kropholler, Lorenz
    Mittelstedt, Christian
    Xu, Bai-Xiang
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2022, 299
  • [39] Solidification of Al12Si Melt Pool in Laser Powder Bed Fusion
    Ghomashchi, Reza
    Nafisi, Shahrooz
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2023, 32 (23) : 10943 - 10955
  • [40] Solidification of Al12Si Melt Pool in Laser Powder Bed Fusion
    Reza Ghomashchi
    Shahrooz Nafisi
    Journal of Materials Engineering and Performance, 2023, 32 : 10943 - 10955