Modeling and experimental validation of a solar-assisted direct expansion air conditioning system

被引:21
|
作者
Vakiloroaya, Vahid [1 ]
Ha, Q. P. [1 ]
Skibniewski, M. [2 ]
机构
[1] Univ Technol Sydney, Sch Elect Mech & Mechatron Syst, Sydney, NSW 2007, Australia
[2] Univ Maryland, AJ Clark Sch Engn, College Pk, MD 20742 USA
关键词
Energy saving; Solar-assisted air conditioner; Modeling; Experimental validation; Performance prediction; PERFORMANCE; SIMULATION; COLLECTORS;
D O I
10.1016/j.enbuild.2013.07.073
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Continuous increase in global electricity consumption, environmental hazards of pollution and depletion of fossil fuel resources have brought about a paradigm shift in the development of eco-friendly and energy-efficient technologies. This paper reports on an experimental study to investigate the inherent operational characteristics of a new direct-expansion air conditioning system combined with a vacuum solar collector. Mathematical models of the system components are firstly derived and then validated against experimental results. To investigate the potential of energy savings, the hybrid solar-assisted air-conditioner is installed and extensively equipped with a number of sensors and instrumentation devices, for experimentation and data collection. The influence on the system energy usage of the average water temperature, storage tank size and room set-point temperature are then analyzed. Once the air-conditioned room has achieved its desired temperature, the compressor turns off while the cooling process still continues until the refrigerant pressure no longer maintains the desired temperature. The advantages of the proposed hybrid system rest with the fact that the compressor can remain off in a longer period by heat impartation into the refrigerant via the water storage tank. Results show an average monthly energy saving of about between 25% and 42%. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:524 / 536
页数:13
相关论文
共 50 条
  • [31] Experimental study on the operating characteristics of multiple collector direct expansion solar-assisted heat pump
    Ma, Guangbai
    Yang, Zhaohui
    Su, Shiqiang
    Dai, Yanjun
    RENEWABLE ENERGY, 2024, 237
  • [32] Exergy Analysis of Direct-Expansion Solar-Assisted Heat Pump Based on Experimental Data
    Kong X.
    Cui F.
    Li J.
    Zhang M.
    Kong, Xiangqiang (xqkong@sdust.edu.cn), 1600, Shanghai Jiaotong University (26): : 138 - 145
  • [33] Economic analysis of a novel solar-assisted air conditioning system with integral absorption energy storage
    Ibrahim, Nasiru I.
    Al-Sulaiman, Fahad A.
    Rehman, Shafiqur
    Saat, Aminuddin
    Ani, Farid Nasir
    JOURNAL OF CLEANER PRODUCTION, 2021, 291
  • [34] Experimental Research on the Performance of a Middle-scale Direct-expansion Solar-assisted PVT Heat Pump System
    Jiang, Shan
    Yao, Jian
    Liu, Wenjie
    Jia, Teng
    Zheng, Sihang
    Zhao, Yao
    Dai, Yanjun
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2023, 44 (11): : 2934 - 2940
  • [35] Experimental performance analysis on a direct-expansion solar-assisted heat pump water heater
    Li, Y. W.
    Wang, R. Z.
    Wu, J. Y.
    Xu, Y. X.
    APPLIED THERMAL ENGINEERING, 2007, 27 (17-18) : 2858 - 2868
  • [36] Exergy analysis of a solar-assisted air-conditioning system: Case study in southern Spain
    Rosiek, S.
    APPLIED THERMAL ENGINEERING, 2019, 148 : 806 - 816
  • [37] EXPERIMENTAL INVESTIGATION OF THE THERMAL PERFORMANCE OF A PROTOTYPE DIRECT-EXPANSION SOLAR-ASSISTED HEAT PUMP SYSTEM IN A COLD CLIMATE
    Abbasi, Bardia
    Li, Simon
    Mwesigye, Aggrey
    PROCEEDINGS OF ASME 2024 18TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, ES2024, 2024,
  • [38] Modeling and simulation of a desiccant assisted solar and geothermal air conditioning system
    Speerforck, Arne
    Ling, Jiazhen
    Aute, Vikrant
    Radermacher, Reinhard
    Schmitz, Gerhard
    ENERGY, 2017, 141 : 2321 - 2336
  • [39] THERMAL PERFORMANCE OF A DIRECT EXPANSION SOLAR-ASSISTED HEAT-PUMP
    CHATURVEDI, SK
    SHEN, JY
    SOLAR ENERGY, 1984, 33 (02) : 155 - 162
  • [40] Operation control strategy of direct-expansion solar-assisted heat pump system for heating
    Kong X.
    Xu X.
    Zhang P.
    Yan X.
    Li Y.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (08): : 38 - 44