We obtain two identities and an explicit formula for the number of homomorphisms of a finite path into a finite path. For the number of endomorphisms of a finite path these give over-count and under-count identities yielding the closed-form formulae of Myers. We also derive finite Laurent series as generating functions which count homomorphisms of a finite path into any path, finite or infinite.
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Computat, Buenos Aires, DF, Argentina
Univ Buenos Aires, Inst Invest Ciencias Computat ICC, CONICET, Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Computat, Buenos Aires, DF, Argentina
Bonomo-Braberman, Flavia
Dourado, Mitre C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Rio De Janeiro, BrazilUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Computat, Buenos Aires, DF, Argentina
Dourado, Mitre C.
Valencia-Pabon, Mario
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 13, Sorbonne Paris Cite, LIPN, CNRS UMR7030, Villataneuse, FranceUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Computat, Buenos Aires, DF, Argentina
Valencia-Pabon, Mario
Vera, Juan C.
论文数: 0引用数: 0
h-index: 0
机构:
Tilburg Univ, Tilburg Sch Econ & Management, Tilburg, NetherlandsUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Computat, Buenos Aires, DF, Argentina
机构:
Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, SloveniaUniv Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, Slovenia
Omladic, Matjaz
Kuzma, Bojan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Primorska, FAMNIT, SI-6000 Koper, Slovenia
Inst Math Phys & Mech, Dept Math, SI-1000 Ljubljana, SloveniaUniv Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, Slovenia