Small extensions of Witt rings

被引:1
|
作者
Fitzgerald, RW [1 ]
机构
[1] So Illinois Univ, Carbondale, IL 62901 USA
关键词
D O I
10.2140/pjm.1999.189.31
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider certain Witt ring extensions S of a noetherian Witt ring R obtained by adding one new generator. The conditions on the new generator are those known to hold when R is the Witt ring of a field F, S is the Witt ring of a field K and K/F is an odd degree extension. We show that if R is of elementary type then so is S.
引用
收藏
页码:31 / 53
页数:23
相关论文
共 50 条
  • [21] DECOMPOSITION OF WITT RINGS
    CARSON, AB
    MARSHALL, MA
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (06): : 1276 - 1302
  • [22] WHEN ARE WITT RINGS GROUP RINGS
    WARE, R
    PACIFIC JOURNAL OF MATHEMATICS, 1973, 49 (01) : 279 - 284
  • [23] EXTENSIONS OF THE WITT ALGEBRA AND APPLICATIONS
    Rian, Khalid
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (06) : 1233 - 1259
  • [24] UNITS IN WITT RINGS
    LEWIS, DW
    COMMUNICATIONS IN ALGEBRA, 1990, 18 (10) : 3295 - 3306
  • [25] COMPARING WITT RINGS
    COLEMAN, DB
    CUNNINGH.J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A63 - A63
  • [26] Semiorderings and witt Rings
    Craven, TC
    Smith, TL
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 67 (02) : 329 - 341
  • [27] Witt kernels of triquadratic extensions
    Leep, DB
    Smith, TL
    ALGEBRAIC AND ARITHMETIC THEORY OF QUADRATIC FORMS, PROCEEDINGS, 2004, 344 : 249 - 256
  • [28] NOTE ON WITT RINGS OVER LOCAL RINGS
    FUJISAKI, G
    JOURNAL OF THE FACULTY OF SCIENCE UNIVERSITY OF TOKYO SECTION 1-MATHEMATICS ASTRONOMY PHYSICS CHEMISTRY, 1972, 19 (03): : 403 - 414
  • [29] APERIODIC RINGS, NECKLACE RINGS, AND WITT VECTORS
    VARADARAJAN, K
    WEHRHAHN, K
    ADVANCES IN MATHEMATICS, 1990, 81 (01) : 1 - 29
  • [30] STRUCTURE OF WITT RINGS OF FORMS
    WARE, RP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 358 - &