FLEXIBLE COVARIANCE ESTIMATION IN GRAPHICAL GAUSSIAN MODELS

被引:73
|
作者
Rajaratnam, Bala [1 ]
Massam, Helene [2 ]
Carvalho, Carlos M. [3 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
[3] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
来源
ANNALS OF STATISTICS | 2008年 / 36卷 / 06期
基金
加拿大自然科学与工程研究理事会;
关键词
Covariance estimation; Gaussian graphical models; Bayes estimators; shrinkage; regularization;
D O I
10.1214/08-AOS619
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a class of Bayes estimators for the covariance matrix of graphical Gaussian models Markov with respect to a decomposable graph G. Working with the W-PG family defined by Letac and Massam [Ann. Statist. 35 (2007) 1278-1323] we derive closed-form expressions for Bayes estimators under the entropy and squared-error losses. The W-PG family includes the classical inverse of the hyper inverse Wishart but has many more shape parameters, thus allowing for flexibility in differentially shrinking various parts of the covariance matrix. Moreover, using this family avoids recourse to MCMC, often infeasible in high-dimensional problems. We illustrate the performance of our estimators through a collection of numerical examples where we explore frequentist risk properties and the efficacy of graphs in the estimation of high-dimensional covariance structures.
引用
收藏
页码:2818 / 2849
页数:32
相关论文
共 50 条
  • [31] Bayesian Uncertainty Estimation for Gaussian Graphical Models and Centrality Indices
    Jongerling, J.
    Epskamp, S.
    Williams, D. R.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2023, 58 (02) : 311 - 339
  • [32] Jewel: A Novel Method for Joint Estimation of Gaussian Graphical Models
    Angelini, Claudia
    De Canditiis, Daniela
    Plaksienko, Anna
    MATHEMATICS, 2021, 9 (17)
  • [33] Consistent multiple changepoint estimation with fused Gaussian graphical models
    A. Gibberd
    S. Roy
    Annals of the Institute of Statistical Mathematics, 2021, 73 : 283 - 309
  • [34] Marginal Likelihoods for Distributed Parameter Estimation of Gaussian Graphical Models
    Meng, Zhaoshi
    Wei, Dennis
    Wiesel, Ami
    Hero, Alfred O., III
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (20) : 5425 - 5438
  • [35] Deep Inference for Covariance Estimation: Learning Gaussian Noise Models for State Estimation
    Liu, Katherine
    Ok, Kyel
    Vega-Brown, William
    Roy, Nicholas
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 1436 - 1443
  • [36] A Min-Max conditional covariance algorithm for structure learning of Gaussian graphical models
    Gao, Wei
    Ye, Wenna
    STATISTICAL ANALYSIS AND DATA MINING, 2019, 12 (01) : 12 - 22
  • [37] Block-Diagonal Covariance Selection for High-Dimensional Gaussian Graphical Models
    Devijver, Emilie
    Gallopin, Melina
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (521) : 306 - 314
  • [38] Regularized Estimation of Piecewise Constant Gaussian Graphical Models: The Group-Fused Graphical Lasso
    Gibberd, Alexander J.
    Nelson, James D. B.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (03) : 623 - 634
  • [39] Unbalanced distributed estimation and inference for the precision matrix in Gaussian graphical models
    Nezakati, Ensiyeh
    Pircalabelu, Eugen
    STATISTICS AND COMPUTING, 2023, 33 (02)
  • [40] Unbalanced distributed estimation and inference for the precision matrix in Gaussian graphical models
    Ensiyeh Nezakati
    Eugen Pircalabelu
    Statistics and Computing, 2023, 33