Space-qualified laser system for the BepiColombo Laser Altimeter

被引:16
|
作者
Kallenbach, Reinald [1 ]
Murphy, Eamonn [2 ]
Gramkow, Bodo [3 ]
Rech, Markus [4 ]
Weidlich, Kai [4 ]
Leikert, Thomas [4 ]
Henkelmann, Reiner [4 ]
Trefzger, Boris [4 ]
Metz, Bodo [4 ]
Michaelis, Harald [5 ]
Lingenauber, Kay [5 ]
DelTogno, Simone [5 ]
Behnke, Thomas [5 ]
Thomas, Nicolas [6 ]
Piazza, Daniele [6 ]
Seiferlin, Karsten [6 ]
机构
[1] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany
[2] Estec, ESA, Directorate Tech & Qual Management TEC MME, NL-2201 AZ Noordwijk, Netherlands
[3] Estec, ESA, Directorate Sci & Robot Explorat, NL-2201 AZ Noordwijk, Netherlands
[4] Cassidian Optron GmbH, D-73447 Oberkochen, Germany
[5] German Aerosp Ctr, Inst Planetary Res, D-12489 Berlin, Germany
[6] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland
关键词
MESSENGER MISSION; ND-YAG; MERCURY; PERFORMANCE; TOPOGRAPHY; INTEGRATION; RADIATION; DESIGN; MODEL;
D O I
10.1364/AO.52.008732
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The space-qualified design of a miniaturized laser for pulsed operation at a wavelength of 1064 nm and at repetition rates up to 10 Hz is presented. This laser consists of a pair of diode-laser pumped, actively q-switched Nd:YAG rod oscillators hermetically sealed and encapsulated in an environment of dry synthetic air. The system delivers at least 300 million laser pulses with 50 mJ energy and 5 ns pulse width (FWHM). It will be launched in 2017 aboard European Space Agency's Mercury Planetary Orbiter as part of the BepiColombo Laser Altimeter, which, after a 6-years cruise, will start recording topographic data from orbital altitudes between 400 and 1500 km above Mercury's surface. (C) 2013 Optical Society of America
引用
收藏
页码:8732 / 8746
页数:15
相关论文
共 50 条
  • [21] The BepiColombo Laser Altimeter (BeLA) power converter module (PCM): Concept and characterisation
    Rodrigo, J.
    Gasquet, E.
    Castro, J. -M.
    Herranz, M.
    Lara, L. -M.
    Munoz, M.
    Simon, A.
    Behnke, T.
    Thomas, N.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2017, 88 (03):
  • [22] Space-qualified fast steering mirror for an image stabilization system of space astronomical telescopes
    Dong, Zhichao
    Jiang, Aimin
    Dai, Yanfeng
    Xue, Jianwei
    APPLIED OPTICS, 2018, 57 (31) : 9307 - 9315
  • [23] The geoscience laser altimeter system (GLAS) laser transmitter
    Afzal, Robert S.
    Yu, Anthony W.
    Dallas, Joseph L.
    Melak, Anthony
    Lukemire, Alan T.
    Ramos-Izqueirdo, L.
    Mamakos, William
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2007, 13 (03) : 511 - 536
  • [24] The performance of the BepiColombo Laser Altimeter (BELA) prior launch and prospects for Mercury orbit operations
    Steinbruegge, G.
    Stark, A.
    Hussmann, H.
    Wickhusen, K.
    Oberst, J.
    PLANETARY AND SPACE SCIENCE, 2018, 159 : 84 - 92
  • [25] SPECS A VERSATILE SPACE-QUALIFIED DETECTOR OF CHARGED PARTICLES
    OBRIEN, BJ
    ABNEY, F
    BURCH, J
    HARRISON, R
    LAQUEY, R
    WINIECKI, T
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1967, 38 (08): : 1058 - &
  • [26] Space-qualified 1.2 mm fiber optic cable
    不详
    MICROWAVE JOURNAL, 2000, 43 (07) : 156 - +
  • [27] Space-qualified mid-infrared illumination sources
    Hayton, Darren
    Hargrave, Peter
    Glasse, Alistair
    SPACE TELESCOPES AND INSTRUMENTATION I: OPTICAL, INFRARED, AND MILLIMETER, PTS 1 AND 2, 2006, 6265
  • [28] Laser altimeter designed for deep space operation
    Cole, TD
    LASER FOCUS WORLD, 1996, 32 (09): : 77 - &
  • [29] In Space Performance of the Lunar Orbiter Laser Altimeter (LOLA) Laser Transmitter
    Yu, Anthony W.
    Shaw, George B.
    Novo-Gradac, Anne Marie
    Li, Steven X.
    Cavanaugh, John
    LIDAR TECHNOLOGIES, TECHNIQUES, AND MEASUREMENTS FOR ATMOSPHERIC REMOTE SENSING VII, 2011, 8182
  • [30] High temperature superconducting space-qualified multiplexers and delay lines
    Talisa, SH
    Janocko, MA
    Meier, DL
    Talvacchio, J
    Moskowitz, C
    Buck, DC
    Nye, RS
    Pieseski, SJ
    Wagner, GR
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1996, 44 (07) : 1229 - 1239