Gabor feature-based composite kernel method for hyperspectral image classification

被引:12
|
作者
Li, Heng-Chao [1 ]
Zhou, Hong-Lian [1 ]
Pan, Lei [1 ]
Du, Qian [2 ]
机构
[1] Southwest Jiaotong Univ, Sichuan Prov Key Lab Informat Coding & Transmiss, Chengdu 610031, Sichuan, Peoples R China
[2] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
基金
中国国家自然科学基金;
关键词
D O I
10.1049/el.2018.0272
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Different from the traditional kernel classifiers that map the original data into high-dimensional kernel space, a novel classifier that project.s Gabor features of the hyperspectral image into the kernel induced space through composite kernel technique is presented. The proposed method can not only improve the flexibility of the exploitation of spatial information but also successfully apply the kernel technique from a very different perspective to strengthen the discriminative ability. Experiments on the Indian Pines dataset demonstrate the superiority of the proposed method.
引用
收藏
页码:628 / 629
页数:2
相关论文
共 50 条
  • [21] Cascade Superpixel Regularized Gabor Feature Fusion for Hyperspectral Image Classification
    Jia, Sen
    Lin, Zhijie
    Deng, Bin
    Zhu, Jiasong
    Li, Qingquan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (05) : 1638 - 1652
  • [22] Review of Hyperspectral Image Classification Based on Feature Fusion Method
    Liu Yuzhen
    Zhu Zhenzhen
    Ma Fei
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (04)
  • [23] Kernel Nonparametric Weighted Feature Extraction for Hyperspectral Image Classification
    Kuo, Bor-Chen
    Li, Cheng-Hsuan
    Yang, Jinn-Min
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (04): : 1139 - 1155
  • [24] Multiple Kernel Feature Line Embedding for Hyperspectral Image Classification
    Chen, Ying-Nong
    REMOTE SENSING, 2019, 11 (24)
  • [25] A new kernel method for hyperspectral image feature extraction
    Zhao B.
    Gao L.
    Liao W.
    Zhang B.
    Gao, Lianru (gaolr@radi.ac.cn), 1600, Taylor and Francis Ltd. (20): : 309 - 318
  • [26] Spectral feature-based hyperspectral RS image retrieval
    Du, PJ
    Chen, YH
    Fang, T
    Tang, H
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2005, 25 (08) : 1171 - 1175
  • [27] Kernel Method Based on Normalized Mutual Information for Hyperspectral Image Classification
    Zhang, Miao
    Shen, Yi
    Wang, Qiang
    I2MTC: 2009 IEEE INSTRUMENTATION & MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-3, 2009, : 833 - 838
  • [28] AN AUTOMATIC KERNEL PARAMETER SELECTION METHOD FOR KERNEL NONPARAMETRIC WEIGHTED FEATURE EXTRACTION WITH THE RBF KERNEL FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Hsieh, Pei-Jyun
    Li, Cheng-Hsuan
    Kuo, Bor-Chen
    Tsai, Pei-Ling
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1706 - 1709
  • [29] HYPERSPECTRAL IMAGE REFINED PLANT CLASSIFICATION BY GRAPH_BASED COMPOSITE KERNEL
    Liu, Yanling
    Zhang, Ye
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 7444 - 7447
  • [30] GABOR FEATURE BASED DICTIONARY FUSION FOR HYPERSPECTRAL IMAGERY CLASSIFICATION
    Jia, Sen
    Hu, Jie
    Tang, Guihua
    Shen, Linlin
    Deng, Lin
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 433 - 436