Removal of Cr(VI) and Cr(III) from aqueous solutions and industrial wastewaters by natural clino-pyrrhotite

被引:135
|
作者
Lu, AH [1 ]
Zhong, SJ
Chen, J
Shi, JX
Tang, JL
Lu, XY
机构
[1] Peking Univ, Dept Geol, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Dept Marine Geosci, Qingdao 266071, Peoples R China
[3] China Univ Geosci, Sch Mat Sci, Beijing 100083, Peoples R China
[4] Inner Mongolia Univ, Dept Chem & Chem Engn, Hohhot 010021, Peoples R China
关键词
D O I
10.1021/es052057x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper introduced a simple method of treating Cr(VI)-bearing toxic wastewaters using a natural mineral: clinopyrrhotite. Laboratory bench-scale mixing experiments were carried out in both Cr(VI)-bearing artificial solutions and industrial wastewaters under controlled conditions. The effects of solution pH, Cr(VI) concentration, mineral grain size, mineral/solution ratio, and reaction time on the Cr(VI) removal were studied. Chromium was effectively removed from the solutions and wastewaters. After the treatment, the liquid was clean enough to be discharged directly into the natural environment. The Cr(VI) removal process involved sequentially the adsorption of Cr(VI), in the form of Cr2O72- or CrO42-, onto the mineral surface, the reduction of the adsorbed Cr(VI) to Cr(III), catalyzed at the vacant Fe sites of the mineral, and finally the precipitation of Cr(III) as Cr2S3, Cr2O3, and Cr(OH)3 solid phases. Conditions such as a fine mineral grain size, an excessive quantity of clino-pyrrhotite and a weak acidic media, favored the removal process. For clino-pyrrhotite with a restricted grain size, the minimum required quantity of the mineral was proportional to the total quantity of Cr(VI) to be removed. Quantitatively, one cubic meter of industrial wastewater that contained similar to 1 mmol dm(-3) of Cr(VI) and had a pH value between 1 and 10 would be effectively treated after it was in contact with 220 kg of 145 +/- 28 mu m clinopyrrhotite for an hour. Furthermore, the quantity of the final solid waste byproduct was small, and the solid residue of clino-pyrrhotite could be reused after a simple rinse with water. Compared to the previous Cr(VI)-bearing wastewater treatment schemes, this method was simple, effective, economical, and environmentally sound. It has great potential for use in industrial-scale applications.
引用
收藏
页码:3064 / 3069
页数:6
相关论文
共 50 条
  • [21] Adsorptive removal of Cr(VI) and Cu(II) ions from aqueous solutions by a natural moss
    Ozeken, Sengul Tugba
    Ozdes, Duygu
    Duran, Celal
    AQUA-WATER INFRASTRUCTURE ECOSYSTEMS AND SOCIETY, 2023, 72 (11) : 2170 - 2185
  • [22] Removal of Cr(III) and Cr(VI) from aqueous solution by adsorption on sugarcane pulp residue
    Yang Zhi-hui
    Wang Bing
    Chai Li-yuan
    Wang Yun-yan
    Wang Hai-ying
    Su Chang-qing
    JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2009, 16 (01): : 101 - 107
  • [23] Effect of pH on the removal of Cr(III) and Cr(VI) from aqueous solution by modified polyethyleneimine
    Wang, Gang
    Chang, Qing
    Zhang, Mingyue
    Han, Xiaoting
    REACTIVE & FUNCTIONAL POLYMERS, 2013, 73 (11): : 1439 - 1446
  • [24] Removal of Cr(III) and Cr(VI) from aqueous solution by adsorption on sugarcane pulp residue
    Zhi-hui Yang
    Bing Wang
    Li-yuan Chai
    Yun-yan Wang
    Hai-ying Wang
    Chang-qing Su
    Journal of Central South University of Technology, 2009, 16 : 101 - 107
  • [25] Cr(VI) and CR(VI) -: Diphenylcarbazide removal from aqueous solutions using an iron rotating disc electrode
    Campos, E.
    Barrera-Diaz, C.
    Urena-Nunez, F.
    Palomar-Pardave, M.
    ENVIRONMENTAL TECHNOLOGY, 2007, 28 (01) : 1 - 9
  • [26] A comparision of adsorption kinetics: Cr(VI) removal from aqueous solutions
    Malkoc, E
    Acar, FN
    FRESENIUS ENVIRONMENTAL BULLETIN, 2005, 14 (06): : 509 - 513
  • [27] Removal of Cr(VI) from aqueous solutions using polymer nanotubes
    Yu, Sheng
    Yuan, Guoming
    Gao, Hejun
    Liao, Yunwen
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (01) : 163 - 176
  • [28] Removal of Cr(VI) from aqueous solutions by modified walnut shells
    Altun, T.
    Pehlivan, E.
    FOOD CHEMISTRY, 2012, 132 (02) : 693 - 700
  • [29] Removal of Cr (VI) from aqueous solutions using wheat bran
    Singh, K. K.
    Hasan, S. H.
    Talat, M.
    Singh, V. K.
    Gangwar, S. K.
    CHEMICAL ENGINEERING JOURNAL, 2009, 151 (1-3) : 113 - 121
  • [30] Removal of Cr(VI) from aqueous solutions using polymer nanotubes
    Sheng Yu
    Guoming Yuan
    Hejun Gao
    Yunwen Liao
    Journal of Materials Science, 2020, 55 : 163 - 176