Direct Estimation of Neurotransmitter Activation Parameters in Dynamic PET Using Regression Neural Networks

被引:0
|
作者
Hu, Yifan [1 ]
Angelis, Georgios I. [5 ]
Kench, Peter L. [2 ,3 ]
Fuller, Oliver K. [2 ,3 ]
Liu, Yaqiang [4 ]
Ma, Tianyu [4 ]
Meikle, Steven R. [2 ,3 ]
机构
[1] Tsinghua Univ, Dept Engn Phys, Med Phys Lab, Key Lab Particle & Radiat Imaging,Minist Educ, Beijing 100084, Peoples R China
[2] Univ Sydney, Brain & Mind Ctr, Sydney, NSW, Australia
[3] Univ Sydney, Fac Hlth Sci, Sydney, NSW, Australia
[4] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China
[5] Royal North Shore Hosp, Northern Sydney Canc Ctr, Radiat Oncol, Sydney, NSW, Australia
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
10.1109/nss/mic42101.2019.9060010
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Current pharmacokinetic models, such as the linear parametric neurotransmitter PET (lp-ntPET) model have been developed to detect and quantify transient changes in receptor occupancy caused by variations in the concentration of endogenous neurotransmitters. However, it often performs poorly when applied at the voxel level due to high statistical noise. In this paper, we propose a new method to detect transient changes in neurotransmitter concentration in dynamic PET data using deep learning. Activation onset time and response magnitude of neurotransmitter were directly estimated using a convolution neural network (CNN) and compared to the lp-ntPET model. Computer simulations, as well as realistic GATE simulations were used to generate dynamic PET data, representing a [C-11]raclopride study, with a known range of activation onset times and response magnitudes, across a wide range of noise levels. Results showed that the proposed neural network had better quantitative performance in estimating activation onset time and response magnitude than the conventional lp-ntPET method, especially where noise is high.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Estimation of motion blur kernel parameters using regression convolutional neural networks
    Varela, Luis G.
    Boucheron, Laura E.
    Sandoval, Steven
    Voelz, David
    Siddik, Abu Bucker
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
  • [2] Direct Parametric Reconstruction for Improved Characterization of Neurotransmitter Release using Dynamic PET
    Petibon, Yoann
    Alpert, Nathaniel
    Ouyang, Jinsong
    Cheung, Joey
    Kang, Min Su
    Hooker, Jacob
    Pizzagalli, Diego
    Cusin, Cristina
    Fava, Maurizio
    El Fakhri, Georges
    Normandin, Marc
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59
  • [3] Direct Estimation of Voxel-Wise Neurotransmitter Response Maps From Dynamic PET Data
    Angelis, Georgios I.
    Gillam, John E.
    Ryder, William J.
    Fulton, Roger R.
    Meikle, Steven R.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (06) : 1371 - 1383
  • [4] Kinetic parameter estimation from dynamic studies of SPECT/PET using artificial neural networks
    Murase, K
    Mochizuki, T
    Kikuchi, T
    Ikezoe, J
    CAR '98 - COMPUTER ASSISTED RADIOLOGY AND SURGERY, 1998, 1165 : 865 - 865
  • [5] Estimation of Stokes Parameters Using Deep Neural Networks
    Manuel Raygoza-Romero, Joan
    Hussein Lopez-Nava, Irvin
    Cesar Ramirez-Velez, Julio
    PATTERN RECOGNITION, MCPR 2023, 2023, 13902 : 159 - 168
  • [6] Estimation of wastewater process parameters using neural networks
    Hack, M
    Kohne, M
    WATER SCIENCE AND TECHNOLOGY, 1996, 33 (01) : 101 - 115
  • [7] Estimation of K distribution parameters using neural networks
    Wachowiak, MP
    Smolíková, R
    Zurada, JM
    Elmaghraby, AS
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2002, 49 (06) : 617 - 620
  • [8] Direct identification of structural parameters from dynamic responses with neural networks
    Xu, B
    Wu, ZS
    Chen, GD
    Yokoyania, K
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, 17 (08) : 931 - 943
  • [9] NONPARAMETRIC REGRESSION USING DEEP NEURAL NETWORKS WITH RELU ACTIVATION FUNCTION
    Schmidt-Hieber, Johannes
    ANNALS OF STATISTICS, 2020, 48 (04): : 1875 - 1897
  • [10] Estimation of the parameters of an infectious disease model using neural networks
    Rao, V. Sree Hari
    Kumar, M. Naresh
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (03) : 1810 - 1818