The inf-sup condition and error estimates of the Nitsche method for evolutionary diffusion-advection-reaction equations

被引:2
|
作者
Ueda, Yuki [1 ]
Saito, Norikazu [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Komaba 3-8-1, Tokyo 1538914, Japan
关键词
Diffusion-advection-reaction equation; Inf-sup condition; IGA; FINITE-ELEMENT-METHOD; DIRICHLET BOUNDARY-CONDITIONS; ISOGEOMETRIC ANALYSIS; WEAK IMPOSITION;
D O I
10.1007/s13160-018-0338-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Nitsche method is a method of "weak imposition" of the inhomogeneous Dirichlet boundary conditions for partial differential equations. This paper explains stability and convergence study of the Nitsche method applied to evolutionary diffusion-advection-reaction equations. We mainly discuss a general space semidiscrete scheme including not only the standard finite element method but also Isogeometric Analysis. Our method of analysis is a variational one that is a popular method for studying elliptic problems. The variational method enables us to obtain the best approximation property directly. Actually, results show that the scheme satisfies the inf-sup condition and Galerkin orthogonality. Consequently, the optimal order error estimates in some appropriate norms are proven under some regularity assumptions on the exact solution. We also consider a fully discretized scheme using the backward Euler method. Numerical example demonstrate the validity of those theoretical results.
引用
收藏
页码:209 / 238
页数:30
相关论文
共 50 条
  • [21] Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition
    Badia, Santiago
    Codina, Ramon
    NUMERISCHE MATHEMATIK, 2007, 107 (04) : 533 - 557
  • [22] Analytical approach to solving linear diffusion-advection-reaction equations with local and nonlocal boundary conditions
    Rodrigo, M.
    Thamwattana, N.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (07) : 6551 - 6573
  • [23] A POSTERIORI ERROR ESTIMATOR FOR DIFFUSION-ADVECTION-REACTION BOUNDARY VALUE PROBLEMS: PIECEWISE LINEAR APPROXIMATIONS ON TRIANGLES
    Ostapov, O. Yu.
    Shynkarenko, H. A.
    JOURNAL OF NUMERICAL AND APPLIED MATHEMATICS, 2011, 2 (105): : 111 - 123
  • [24] Error propagation in approximations to reaction-diffusion-advection equations
    Yannacopoulos, AN
    Tomlin, AS
    Brindley, J
    Merkin, JH
    Pilling, MJ
    PHYSICS LETTERS A, 1996, 223 (1-2) : 82 - 90
  • [25] Error propagation in approximations to reaction-diffusion-advection equations
    Yannacopoulos, A.N.
    Tomlin, A.S.
    Brindley, J.
    Merkin, J.H.
    Pilling, M.J.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 223 (1-2): : 82 - 90
  • [26] Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations
    Schroeder P.W.
    Lehrenfeld C.
    Linke A.
    Lube G.
    SeMA Journal, 2018, 75 (4) : 629 - 653
  • [27] Error analysis of non inf-sup stable discretizations of the time-dependent Navier-Stokes equations with local projection stabilization
    de Frutos, Javier
    Garcia-Archilla, Bosco
    John, Volker
    Novo, Julia
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (04) : 1747 - 1786
  • [28] An error analysis of a finite element method for a system of nonlinear advection-diffusion-reaction equations
    Liu, Biyue
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (08) : 1947 - 1959
  • [29] Error estimates for a finite volume scheme for advection-diffusion equations with rough coefficients
    Navarro-Fernandez, Victor
    Schlichting, Andre
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (04) : 2131 - 2158
  • [30] Symmetric error estimates for moving mesh Galerkin methods for advection-diffusion equations
    Dupont, TF
    Liu, YJ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (03) : 914 - 927