Big data processing framework for manufacturing

被引:6
|
作者
Ye, Yinghao [1 ]
Wang, Meilin [1 ]
Yao, Shuhong [1 ]
Jiang, Jarvis N. [1 ]
Liu, Qing [1 ]
机构
[1] Guangdong Univ Technol, Sch Informat Engn, Guangzhou, Peoples R China
关键词
manufacturing; big data; data processing; random forest;
D O I
10.1016/j.procir.2019.04.109
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Data analysis of manufacturing plays a vital part in the intelligent manufacturing service of Product-Service Systems (PSS). In order to solve the problem that, manufacturing companies can't obtain valuable information from enterprise's big data through traditional data analysis methods, this paper put forward a data processing architecture framework and introduce the predictive algorithm (Random Forest). Finally, a real-time prediction of quality under this framework which uses the random forest algorithm is given to verify the usefulness of the architecture framework. (C) 2019 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the scientific committee of the 11th CIRP Conference on Industrial Product-Service Systems
引用
收藏
页码:661 / 664
页数:4
相关论文
共 50 条
  • [31] Processing Geo-Dispersed Big Data in an Advanced MapReduce Framework
    Zhang, Hongli
    Zhang, Qiang
    Zhou, Zhigang
    Du, Xiaojiang
    Yu, Wei
    Guizani, Mohsen
    IEEE NETWORK, 2015, 29 (05): : 24 - 30
  • [32] FENCE: Fast, ExteNsible, and ConsolidatEd Framework for Intelligent Big Data Processing
    Ramneek
    Cha, Seung-Jun
    Pack, Sangheon
    Jeon, Seung Hyub
    Jeong, Yeon Jeong
    Kim, Jin Mee
    Jung, Sungin
    IEEE ACCESS, 2020, 8 : 125423 - 125437
  • [33] A Demonstration of GeoSpark: A Cluster Computing Framework for Processing Big Spatial Data
    Yu, Jia
    Wu, Jinxuan
    Sarwat, Mohamed
    2016 32ND IEEE INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2016, : 1410 - 1413
  • [34] A Unified OLAP/OLTP Big Data Processing Framework in Telecom Industry
    Lu, Xin
    Su, Fei
    Liu, Haozhang
    Chen, Weiwei
    Cheng, Xingzhou
    2016 16TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES (ISCIT), 2016, : 290 - 295
  • [35] A service-oriented framework for remote sensing big data processing
    Enayati, Roohollah
    Ravanmehr, Reza
    Aghazarian, Vahe
    EARTH SCIENCE INFORMATICS, 2023, 16 (01) : 591 - 616
  • [36] A service-oriented framework for remote sensing big data processing
    Roohollah Enayati
    Reza Ravanmehr
    Vahe Aghazarian
    Earth Science Informatics, 2023, 16 : 591 - 616
  • [37] The framework of social networks big data processing based on cloud computing
    Kewen, Liu, 1600, Science and Engineering Research Support Society (09):
  • [38] Efficient, Problem Tailored Big Data Processing Using Framework Delegation
    Davis, Nickolas
    Broomfield, Matthew
    Rezgui, Abdelmounaam
    2016 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATION (ISCC), 2016, : 1297 - 1299
  • [39] Trust-Based Scheduling Framework for Big Data Processing with MapReduce
    Thanh Dat Dang
    Doan Hoang
    Nguyen, Diep N.
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2022, 15 (01) : 279 - 293
  • [40] Big traffic data processing framework for intelligent monitoring and recording systems
    Xia, Yingjie
    Chen, Jinlong
    Lu, Xindai
    Wang, Chunhui
    Xu, Chao
    NEUROCOMPUTING, 2016, 181 : 139 - 146