On the Leibniz cohomology of vector fields

被引:0
|
作者
Frabetti, A
Wagemann, F
机构
[1] Univ Lyon 1, Inst Girard Desargues, F-69622 Villeurbanne, France
[2] Univ Nantes, Dept Math, Fac Sci & Tech, F-44322 Nantes, France
关键词
Leibniz cohomology; vector fields; Gelfand-Fuks spectral sequence;
D O I
10.1023/A:1014740320370
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Gelfand and Fuks have studied the cohomology of the Lie algebra of vector fields on a manifold. In this article, we generalize their main tools to compute the Leibniz cohomology, by extending the two spectral sequences associated to the diagonal and the order filtration. In particular, we determine some new generators for the diagonal Leibniz cohomology of the Lie algebra of vector fields on the circle.
引用
收藏
页码:177 / 190
页数:14
相关论文
共 50 条
  • [31] Cohomology of lie superalgebras of Hamiltonian vector fields: Computer analysis
    Kornyak, VV
    CASC'99: COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 1999, : 241 - 249
  • [32] Differential Graded Cohomology and Lie Algebras¶of Holomorphic Vector Fields
    Friedrich Wagemann
    Communications in Mathematical Physics, 1999, 208 : 521 - 540
  • [33] Gelfand-Fuchs cohomology of invariant formal vector fields
    Shapiro, Ilya
    Tang, Xiang
    MATHEMATICAL RESEARCH LETTERS, 2008, 15 (01) : 129 - 148
  • [34] Enveloping Algebras and Cohomology of Leibniz Pairs
    Bao, Yan-Hong
    Ye, Yu
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (10) : 4487 - 4501
  • [35] Leibniz cohomology and connections on differentiable manifolds
    Lodder, Jerry M.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 79
  • [36] On equivariant Hom-Leibniz cohomology
    Saha, Ripan
    AFRIKA MATEMATIKA, 2021, 32 (7-8) : 1685 - 1696
  • [37] Cohomology of Leibniz triple systems with derivations
    Wu, Xueru
    Ma, Yao
    Sun, Bing
    Chen, Liangyun
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 179
  • [38] On equivariant Hom-Leibniz cohomology
    Ripan Saha
    Afrika Matematika, 2021, 32 : 1685 - 1696
  • [39] Factor-complex for Leibniz cohomology
    Dzhumadil'daev, AS
    Davydov, AA
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (09) : 4197 - 4210
  • [40] A Comparison of Leibniz and Lie Cohomology and Deformations
    Fialowski, Alice
    ALGEBRA, GEOMETRY AND MATHEMATICAL PHYSICS (AGMP), 2014, 85 : 233 - 246