Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids

被引:227
|
作者
Li, Haoran [1 ]
Wang, Li [1 ]
He, Yurong [1 ]
Hu, Yanwei [1 ]
Zhu, Jiaqi [1 ]
Jiang, Baocheng [1 ]
机构
[1] Harbin Inst Technol, Harbin 1500W, Peoples R China
基金
中国国家自然科学基金;
关键词
ZnO-EG nanofluids; Thermal conductivity; Viscosity; Experimental investigation; HEAT-TRANSFER; PARTICLE-SIZE; RHEOLOGICAL BEHAVIOR; AQUEOUS SUSPENSIONS; FLOW BEHAVIOR; WATER; ENHANCEMENT; TEMPERATURE;
D O I
10.1016/j.applthermaleng.2014.10.071
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this work, well dispersed ethylene glycol (EG) based nanofluids containing ZnO nanoparticles with different mass fractions between 1.75% and 10.5% were prepared by a typical two-step method. Structural properties of the dry ZnO nanoparticles were measured with X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Thermal transport properties including thermal conductivity and viscosity were experimentally measured for the nanofluids. The experimental results show that thermal conductivity increases slightly with increasing the temperature from 15 to 55 degrees C. It depends strongly on particle concentration and increases nonlinearly with the concentration within the range studied. The enhanced value is higher than the value predicted by the Hamilton and Crosser (H - C) model. Moreover, viscosity increases with concentration as usual for ZnO nanoparticles and decreases with temperature. For an analysis of the rheological behaviors, it shows that ZnO-EG nanofluids with mass fraction wt.% <= 10.5 demonstrate Newtonian behaviors. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:363 / 368
页数:6
相关论文
共 50 条
  • [11] Effect of prolonged ultrasonication on the thermal conductivity of ZnO-ethylene glycol nanofluids
    Kole, Madhusree
    Dey, T. K.
    THERMOCHIMICA ACTA, 2012, 535 : 58 - 65
  • [12] Enhancement of thermal conductivity of ethylene glycol based silver nanofluids
    Sharma, Pankaj
    Baek, Il-Hyun
    Cho, Taehyun
    Park, Sangdo
    Lee, Ki Bong
    POWDER TECHNOLOGY, 2011, 208 (01) : 7 - 19
  • [13] Investigation on the Electrical Conductivity of Aqueous Glycol based ZnO Nanofluids
    Chilambarasan, L.
    Prakash, R.
    Shanu, J. P.
    Murugasen, P.
    JOURNAL OF APPLIED FLUID MECHANICS, 2019, 12 (03) : 865 - 870
  • [14] Experimental Investigation On The Thermal Conductivity And Viscosity Of Engine Coolant Based Alumina Nanofluids
    Kole, Madhusree
    Dey, T. K.
    5TH INTERNATIONAL CONFERENCE ON THERMOPHYSICAL PROPERTIES, 2010, 1249 : 120 - 124
  • [15] AN INVESTIGATION ON THERMAL CONDUCTIVITY AND VISCOSITY OF WATER BASED NANOFLUIDS
    Tavman, I.
    Turgut, A.
    MICROFLUIDICS BASED MICROSYSTEMS: FUNDAMENTALS AND APPLICATIONS, 2010, : 139 - 162
  • [16] MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles
    Xie, Huaqing
    Yu, Wei
    Chen, Wei
    JOURNAL OF EXPERIMENTAL NANOSCIENCE, 2010, 5 (05) : 463 - 472
  • [17] Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids
    Kole, Madhusree
    Dey, T. K.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (08)
  • [18] Experimental investigation on the thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids
    Yang, Juan-Cheng
    Li, Feng-Chen
    Zhou, Wen-Wu
    He, Yu-Rong
    Jiang, Bao-Cheng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (11-12) : 3160 - 3166
  • [19] Investigation of the electrical conductivity of propylene glycol-based ZnO nanofluids
    Steven Bryan White
    Albert Jau-Min Shih
    Kevin Patrick Pipe
    Nanoscale Research Letters, 6
  • [20] Investigation of the electrical conductivity of propylene glycol-based ZnO nanofluids
    White, Steven Bryan
    Shih, Albert Jau-Min
    Pipe, Kevin Patrick
    NANOSCALE RESEARCH LETTERS, 2011, 6 : 1 - 5