Deep learning as phase retrieval tool for CARS spectra

被引:42
|
作者
Houhou, Rola [1 ,2 ,3 ]
Barman, Parijat [3 ]
Schmitt, Micheal [1 ,2 ]
Meyer, Tobias [1 ,2 ,3 ]
Popp, Juergen [1 ,2 ,3 ]
Bocklitz, Thomas [1 ,2 ,3 ]
机构
[1] Friedrich Schiller Univ, Inst Phys Chem, Helmholtzweg 4, D-07743 Jena, Germany
[2] Friedrich Schiller Univ, Abbe Ctr Photon, Helmholtzweg 4, D-07743 Jena, Germany
[3] Leibniz Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany
关键词
MAXIMUM-ENTROPY MODEL; RAMAN-SCATTERING; NEURAL-NETWORKS; COHERENT; SPECTROSCOPY; TIME;
D O I
10.1364/OE.390413
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Finding efficient and reliable methods for the extraction of the phase in optical measurements is challenging and has been widely investigated. Although sophisticated optical settings, e.g. holography, measure directly the phase, the use of algorithmic methods has gained attention due to its efficiency, fast calculation and easy setup requirements. We investigated three phase retrieval methods: the maximum entropy technique (MEM), the Kramers-Kronig relation (KK), and for the first time deep learning using the Long Short-Term Memory network (LSTM). LSTM shows superior results for the phase retrieval problem of coherent anti-Stokes Raman spectra in comparison to MEM and KK. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
引用
收藏
页码:21002 / 21024
页数:23
相关论文
共 50 条
  • [41] Convolutional neural network-based retrieval of Raman signals from CARS spectra
    Junjuri, Rajendhar
    Saghi, Ali
    Lensu, Lasse
    Vartiainen, Erik M.
    OPTICS CONTINUUM, 2022, 1 (06): : 1324 - 1339
  • [42] Deep learning based phase retrieval with complex beam shapes for beam shape correction
    Yan, Shengyuan
    Off, Richard
    Yayak, Anil bora
    Wudy, Katrin
    Aghajani-talesh, Anoush
    Birg, Markus
    Grunewald, Jonas
    Holenderski, Mike
    Meratnia, Nirvana
    OPTICS EXPRESS, 2025, 33 (05): : 10806 - 10834
  • [43] A single-frame deep learning phase retrieval algorithm based on defocus grating
    Qiu X.
    Zhao W.
    Yang C.
    Cheng T.
    Wang S.
    Xu B.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2020, 49 (10):
  • [44] Deep learning tool for Saturn
    不详
    ASTRONOMY & GEOPHYSICS, 2019, 60 (03) : 9 - 9
  • [45] Retrieval Practice: A Power Tool for Lasting Learning
    Agarwal, Pooja K.
    EDUCATIONAL LEADERSHIP, 2020, 77 (08) : 76 - 81
  • [46] Counting Cars from Aerial Videos Using Deep Learning
    Polidoro, Caio H. S.
    de Castro, Wellington V. M.
    Marcato, Jose
    Salgado Filho, Geison
    Matsubara, Edson T.
    PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I, 2019, 11804 : 637 - 649
  • [47] Deep Learning Techniques for Obstacle Detection and Avoidance in Driverless Cars
    Sanil, Nischal
    Venkat, Pasumarthy Ankith Naga
    Rakesh, V
    Mallapur, Rishab
    Ahmed, Mohammed Riyaz
    2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2020,
  • [48] DEEP HASH LEARNING FOR EFFICIENT IMAGE RETRIEVAL
    Lu, Xuchao
    Sang, Li
    Xie, Rang
    Yang, Xiaakang
    Zhang, Wenjun
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2017,
  • [49] Multimodal Deep Learning and Fast Retrieval for Recommendation
    Ciarlo, Daniele
    Portinale, Luigi
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2022), 2022, 13515 : 52 - 60
  • [50] Multimedia Retrieval via Deep Learning to Rank
    Zhao, Xueyi
    Li, Xi
    Zhang, Zhongfei
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (09) : 1487 - 1491