Outlier Detection based on Transformations for Astronomical Time Series

被引:0
|
作者
Romero, Mauricio [1 ]
Estevez, Pablo A. [1 ]
机构
[1] Univ Chile, Dept Elect Engn, Santiago, Chile
关键词
outlier detection; contrastive learning; transformations; time series; astronomy;
D O I
10.1109/IJCNN55064.2022.9892590
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we propose an outlier detection method for astronomical light curves, based on time series transformations as temporal shift, masking, warping, etc. It is assumed that the outliers are unknown, and that we have access only to a set of inliers. A neural network encoder is used to learn a representation of a light curve minimizing the distance between objects of the same class and maximizing it otherwise. Each light curve is encoded as a single vector. An outlier score is computed based on the distance to the nearest class centroid. The model is applied to datasets from the Zwicky Transient Facility (ZTF), All Sky Automated Survey (ASAS) and Lincoln Near-Earth Asteroid Research (LINEAR) surveys. For model selection, surrogate metrics are estimated with the validation set. The metrics under test are the average hit ratio of the k-nearest neighbors of each light curve in the representation space, silhouette coefficient, Calinski-Harabasz index and Davies-Bouldin index. The results show that the proposed model outperforms state-of-the-art methods based on time series features and neural network approaches, reaching an average AUCPR of 0.89 for detecting outliers in the three datasets.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Outlier Detection and Forecasting for Bridge Health Monitoring Based on Time Series Intervention Analysis
    Qu B.
    Liao P.
    Huang Y.
    SDHM Structural Durability and Health Monitoring, 2022, 16 (04): : 323 - 341
  • [42] Network Anomaly Detection in Time Series using Distance Based Outlier Detection with Cluster Density Analysis
    Flanagan, Kieran
    Fallon, Enda
    Connolly, Paul
    Awad, Abir
    PROCEEDINGS OF THE 2017 7TH INTERNATIONAL CONFERENCE INTERNET TECHNOLOGIES AND APPLICATIONS (ITA), 2017, : 116 - 121
  • [43] On-line outlier and change point detection for time series
    Su Wei-xing
    Zhu Yun-long
    Liu Fang
    Hu Kun-yuan
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2013, 20 (01) : 114 - 122
  • [44] NUMERICAL PROCEDURES FOR OUTLIER DETECTION IN CIRCULAR TIME SERIES MODELS
    bin Mohamed, Ibrahim
    Abuzaid, Ali
    Hussin, Abdul Ghapor
    INTERNATIONAL WORK-CONFERENCE ON TIME SERIES (ITISE 2014), 2014, : 68 - 68
  • [45] On-line outlier and change point detection for time series
    苏卫星
    朱云龙
    刘芳
    胡琨元
    JournalofCentralSouthUniversity, 2013, 20 (01) : 114 - 122
  • [46] Improving Solar Flare Prediction by Time Series Outlier Detection
    Wen, Junzhi
    Islam, Md Reazul
    Ahmadzadeh, Azim
    Angryk, Rafal A.
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2022, PT II, 2023, 13589 : 152 - 164
  • [47] Outlier detection for multivariate time series: A functional data approach
    Lopez-Oriona, Angel
    Vilar, Jose A.
    KNOWLEDGE-BASED SYSTEMS, 2021, 233
  • [48] Evaluation of methods for the combination of phenological time series and outlier detection
    Schaber, J
    Badeck, FW
    TREE PHYSIOLOGY, 2002, 22 (14) : 973 - 982
  • [49] Automatic outlier detection for time series: an application to sensor data
    Sabyasachi Basu
    Martin Meckesheimer
    Knowledge and Information Systems, 2007, 11 : 137 - 154
  • [50] On-line outlier and change point detection for time series
    Wei-xing Su
    Yun-long Zhu
    Fang Liu
    Kun-yuan Hu
    Journal of Central South University, 2013, 20 : 114 - 122