Well-Posedness by Perturbations for Variational-Hemivariational Inequalities

被引:5
|
作者
Lv, Shu [1 ]
Xiao, Yi-bin [1 ]
Liu, Zhi-bin [2 ,3 ]
Li, Xue-song [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 610054, Sichuan, Peoples R China
[2] SW Petr Univ, Dept Appl Math, Chengdu 610500, Peoples R China
[3] State Key Lab Oil & Gas Reservoir & Exploitat, Chengdu 610500, Peoples R China
[4] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
OPTIMIZATION; REGULARIZATION; EXISTENCE;
D O I
10.1155/2012/804032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the concept of well-posedness by perturbations for optimization problem to a class of variational-hemivariational inequalities. We establish some metric characterizations of the well-posedness by perturbations for the variational-hemivariational inequality and prove their equivalence between the well-posedness by perturbations for the variational-hemivariational inequality and the well-posedness by perturbations for the corresponding inclusion problem.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] VARIATIONAL-HEMIVARIATIONAL INEQUALITIES ON UNBOUNDED DOMAINS
    Kristaly, Alexandru
    Varga, Csaba
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2010, 55 (02): : 3 - 87
  • [42] On the optimal control of variational-hemivariational inequalities
    Xiao, Yi-bin
    Sofonea, Mircea
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (01) : 364 - 384
  • [43] ON VARIATIONAL-HEMIVARIATIONAL INEQUALITIES WITH NONCONVEX CONSTRAINTS
    Chadli, Ouayl
    Yao, Jen-Chih
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (06): : 893 - 907
  • [44] Existence theorems of the variational-hemivariational inequalities
    Guo-ji Tang
    Nan-jing Huang
    Journal of Global Optimization, 2013, 56 : 605 - 622
  • [45] On convergence of solutions to variational-hemivariational inequalities
    Zeng, Biao
    Liu, Zhenhai
    Migorski, Stanislaw
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (03):
  • [46] On regularity results for variational-hemivariational inequalities
    Naniewicz, Z
    Panagiotopoulos, PD
    DIRECT AND INVERSE PROBLEMS OF MATHEMATICAL PHYSICS, 2000, 5 : 301 - 322
  • [47] Time-dependent elliptic quasi-variational-hemivariational inequalities: well-posedness and application
    Jiang, Tie-jun
    Cai, Dong-ling
    Xiao, Yi-bin
    Migorski, Stanislaw
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 88 (02) : 509 - 530
  • [48] Time-dependent elliptic quasi-variational-hemivariational inequalities: well-posedness and application
    Tie-jun Jiang
    Dong-ling Cai
    Yi-bin Xiao
    Stanisław Migórski
    Journal of Global Optimization, 2024, 88 : 509 - 530
  • [49] A Revisit of Elliptic Variational-Hemivariational Inequalities
    Han, Weimin
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (04) : 371 - 395
  • [50] Existence theorems of the variational-hemivariational inequalities
    Tang, Guo-ji
    Huang, Nan-jing
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (02) : 605 - 622