Lp-spectrum of the Dirac operator on products with hyperbolic spaces

被引:0
|
作者
Ammann, Bernd [1 ]
Grosse, Nadine [2 ]
机构
[1] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
[2] Univ Freiburg, Math Inst, D-79104 Freiburg, Germany
关键词
UNIFORMLY ELLIPTIC-OPERATORS; MANIFOLDS; LAPLACIAN; DYNAMICS;
D O I
10.1007/s00526-016-1046-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the L-p-spectrum of the Dirac operator on complete manifolds. One of the main questions in this context is whether this spectrum depends on p. As a first example where p-independence fails we compute explicitly the L-p-spectrum for the hyperbolic space and its product with compact spaces.
引用
收藏
页数:36
相关论文
共 50 条
  • [41] On the finiteness of the discrete spectrum of the Dirac operator
    Cojuhari, PA
    REPORTS ON MATHEMATICAL PHYSICS, 2006, 57 (03) : 333 - 341
  • [42] Dirac operator spectrum in the linear σ model
    Spitzenberg, T
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 50, NO 2: QUARKS IN HADRONS AND NUCLEI, 2003, 50 (02): : 371 - 373
  • [43] DISCRETE SPECTRUM OF THE PERTURBED DIRAC OPERATOR
    BIRMAN, MS
    LAPTEV, A
    ARKIV FOR MATEMATIK, 1994, 32 (01): : 13 - 32
  • [44] The Spectrum of the Hilbert Matrix as an Operator on lp
    Gonzalez, Manuel
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2012, 74 (01) : 3 - 4
  • [45] On the spectrum of a periodic magnetic Dirac operator
    Danilov, L. I.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2016, (02): : 3 - 21
  • [46] ON PERTURBATION OF CONTINUOUS SPECTRUM OF DIRAC OPERATOR
    MOCHIZUKI, K
    PROCEEDINGS OF THE JAPAN ACADEMY, 1964, 40 (09): : 707 - &
  • [47] Products of Hyperbolic Metric Spaces
    Thomas Foertsch
    Viktor Schroeder>
    Geometriae Dedicata, 2003, 102 : 197 - 212
  • [48] Products of hyperbolic metric spaces
    Foertsch, T
    Schroeder, V
    GEOMETRIAE DEDICATA, 2003, 102 (01) : 197 - 212
  • [49] DIMENSIONS OF PRODUCTS OF HYPERBOLIC SPACES
    Lebedeva, N.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2008, 19 (01) : 107 - 124
  • [50] The Lp spectrum of Riemannian products
    Andreas Weber
    Archiv der Mathematik, 2008, 90 : 279 - 283