On sums of products of the extended q-Euler numbers

被引:4
|
作者
Kim, Min-Soo [2 ]
Lee, Jun Ho [1 ]
机构
[1] Korea Inst Adv Study, Sch Math, Seoul 130722, South Korea
[2] Kyungnam Univ, Div Cultural Educ, Chang Won 631701, South Korea
关键词
Sums of products; Extended q-Euler numbers and polynomials; Higher-order extended q-Euler numbers and polynomials; Alternating Hurwitz q-zeta functions; Alternating multiple Hurwitz q-zeta functions; q-Stirling numbers of the first kind; Q-BERNOULLI NUMBERS;
D O I
10.1016/j.jmaa.2012.07.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by expressing the sums of products of the extended q-Euler polynomials in terms of the special values of the alternating multiple Hurwitz q-zeta function at non-positive integers, we obtain a sums of products identity for the extended q-Euler numbers, which is an extension of Satoh's result for any extended q-Euler numbers. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:522 / 528
页数:7
相关论文
共 50 条
  • [31] Some results for the q-Bernoulli, q-Euler numbers and polynomials
    Kim, Daeyeoul
    Kim, Min-Soo
    ADVANCES IN DIFFERENCE EQUATIONS, 2011, : 1 - 16
  • [32] Extended q-Euler numbers and polynomials associated with fermionic p-adic q-integral on Zp
    Kim, T.
    Choi, J. Y.
    Sug, J. Y.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2007, 14 (02) : 160 - 163
  • [33] Extended q-euler numbers and polynomials associated with fermionic p-adic q-integral on Zp
    T. Kim
    J. Y. Choi
    J. Y. Sug
    Russian Journal of Mathematical Physics, 2007, 14 : 160 - 163
  • [34] Hankel determinants and Jacobi continued fractions for q-Euler numbers
    Chern, Shane
    Jiu, Lin
    arXiv, 2023,
  • [35] On the von Staudt-Clausen theorem for q-Euler numbers
    Kim, T.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2013, 20 (01) : 33 - 38
  • [36] On the Modified q-Euler Numbers and Polynomials with Weak Weight 0
    Park, Jin-Woo
    Rim, Seog-Hoon
    Pyo, Sung-Soo
    Kwon, JongKyum
    KYUNGPOOK MATHEMATICAL JOURNAL, 2014, 54 (03): : 463 - 469
  • [37] Explicit formulas on the second kind q-Euler numbers and polynomials
    Ryoo, C. S.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (07) : 1266 - 1271
  • [38] Identities Involving Two Kinds of q-Euler Polynomials and Numbers
    Bayad, Abdelmejid
    Hamahata, Yoshinori
    JOURNAL OF INTEGER SEQUENCES, 2012, 15 (04)
  • [39] On the von Staudt-Clausen theorem for q-Euler numbers
    T. Kim
    Russian Journal of Mathematical Physics, 2013, 20 : 33 - 38
  • [40] Hankel determinants and Jacobi continued fractions for q-Euler numbers
    Chern, Shane
    Jiu, Lin
    COMPTES RENDUS MATHEMATIQUE, 2024, 362 : 203 - 216