Higher-Order Infinitesimal Robustness

被引:12
|
作者
La Vecchia, Davide [1 ]
Ronchetti, Elvezio [2 ,3 ,4 ]
Trojani, Fabio [4 ,5 ]
机构
[1] Monash Univ, Dept Econometr & Business Stat, Melbourne, Vic 3004, Australia
[2] Univ Geneva, Ctr Stat, Geneva, Switzerland
[3] Univ Geneva, Dept Econ, Geneva, Switzerland
[4] Univ Svizzera Italiana, Fac Econ, Lugano, Switzerland
[5] Swiss Finance Inst, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Generalized extreme value distribution; M-estimator; Robustness; Saddlepoint; von Mises Expansion; MINIMUM HELLINGER DISTANCE; LOGISTIC-REGRESSION; FUNCTIONALS; EXPANSIONS; EQUATIONS; MODELS;
D O I
10.1080/01621459.2012.738580
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Using the von Mises expansion, we study the higher-order infinitesimal robustness of a general M-functional and characterize its second-order properties. We show that second-order robustness is equivalent to the boundedness of both the estimator's estimating function and its derivative with respect to the parameter. It implies, at the same time, (i) variance robustness and (ii) robustness of higher-order saddlepoint approximations to the estimator's finite sample density. The proposed construction of second-order robust M-estimators is fairly general and potentially useful in a variety of relevant settings. Besides the theoretical contributions, we discuss the main computational issues and provide an algorithm for the implementation of second-order robust M-estimators. Finally, we illustrate our theory by Monte Carlo simulation and in a real-data estimation of the maximal losses of Nikkei 225 index returns. Our finding indicate that second-order robust estimators can improve on other widely applied robust estimators, in terms of efficiency and robustness, for moderate to small sample sizes and in the presence of deviations from ideal parametric models. Supplementary materials for this article are available online.
引用
收藏
页码:1546 / 1557
页数:12
相关论文
共 50 条
  • [21] Robustness of higher-order interdependent networks with reinforced nodes
    Zhang, Junjie
    Liu, Caixia
    Liu, Shuxin
    Wang, Yahui
    Li, Jie
    Zang, Weifei
    CHAOS, 2024, 34 (08)
  • [22] Robustness Stability Analysis of Higher-Order DPCM Prediction Filters
    Dankovic, Nikola B.
    Peric, Zoran H.
    Antic, Dragan S.
    Jocic, Aleksandar, V
    Nikolic, Sasa S.
    Djekic, Petar B.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2024, 30 (04) : 43 - 51
  • [23] Higher Order Infinitesimal Freeness
    Fevrier, Maxime
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (01) : 249 - 295
  • [24] Higher-Order Intentionality and Higher-Order Acquaintance
    Benj Hellie
    Philosophical Studies, 2007, 134 : 289 - 324
  • [25] Higher-order intentionality and higher-order acquaintance
    Hellie, Benj
    PHILOSOPHICAL STUDIES, 2007, 134 (03) : 289 - 324
  • [26] INFINITESIMAL BENDINGS WITH SLIDING OF HIGHER-ORDER OF ROTATIONAL SURFACES WITH SING-ARBITRARY CURVATURE
    IVANOVAKARATOPRAKLIEVA, I
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1992, 45 (05): : 23 - 26
  • [27] Higher-Order Rewiring Strategy for Enhancing Robustness of Multiplex Aviation Networks
    Fan, Dongming
    Liu, Meng
    Hai, Xingshuo
    Ren, Yi
    Feng, Qiang
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 6417 - 6430
  • [28] Robustness of interdependent directed higher-order networks against cascading failures
    Zhao, Dandan
    Ling, Xianwen
    Peng, Hao
    Zhong, Ming
    Han, Jianmin
    Wang, Wei
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 462
  • [29] A CONSISTENT HIGHER-ORDER THEORY WITHOUT A (HIGHER-ORDER) MODEL
    FORSTER, T
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1989, 35 (05): : 385 - 386
  • [30] CALCULATION OF HIGHER-ORDER SENSITIVITIES AND HIGHER-ORDER SENSITIVITY INVARIANTS
    GEHER, K
    SOLYMOSI, J
    PERIODICA POLYTECHNICA-ELECTRICAL ENGINEERING, 1972, 16 (03): : 325 - 330