The BACON-EEM algorithm for multivariate outlier detection in incomplete survey data

被引:0
|
作者
Beguin, Cedric [1 ]
Hulliger, Beat [2 ]
机构
[1] Univ Neuchatel, CH-2010 Neuchatel, Switzerland
[2] Univ Appl Sci NW Switzerland, CH-4600 Olten, Switzerland
关键词
forward search method; outlier detection; multivariate data; missing value; sampling; robustness; E-M algorithm;
D O I
暂无
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
With complete multivariate data the BACON algorithm (Billor, Hadi and Vellemann 2000) yields a robust estimate of the covariance matrix. The corresponding Mahalanobis distance may be used for multivariate outlier detection. When items are missing the EM algorithm is a convenient way to estimate the covariance matrix at each iteration step of the BACON algorithm. In finite population sampling the EM algorithm must be enhanced to estimate the covariance matrix of the population rather than of the sample. A version of the EM algorithm for survey data following a multivariate normal model, the EEM algorithm (Estimated Expectation Maximization), is proposed. The combination of the two algorithms, the BACON-EEM algorithm, is applied to two datasets and compared with alternative methods.
引用
收藏
页码:91 / 103
页数:13
相关论文
共 50 条
  • [21] Treatment of Multivariate Outliers in Incomplete Business Survey Data
    Bill, Marc
    Hulliger, Beat
    AUSTRIAN JOURNAL OF STATISTICS, 2016, 45 (01) : 3 - 23
  • [22] A Survey of Outlier Detection Algorithms for Data Streams
    Tamboli, Jinita
    Shukla, Madhu
    PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, 2016, : 3535 - 3540
  • [23] Outlier detection over data streams: Survey
    Brahmi Z.
    Souiden I.
    International Journal of Business Intelligence and Data Mining, 2021, 19 (04) : 481 - 507
  • [24] Outlier detection for multivariate time series: A functional data approach
    Lopez-Oriona, Angel
    Vilar, Jose A.
    KNOWLEDGE-BASED SYSTEMS, 2021, 233
  • [25] Shape-based outlier detection in multivariate functional data
    Lejeune, Clement
    Mothe, Josiane
    Soubki, Adil
    Teste, Olivier
    KNOWLEDGE-BASED SYSTEMS, 2020, 198
  • [26] Comparison of local outlier detection techniques in spatial multivariate data
    Ernst, Marie
    Haesbroeck, Gentiane
    DATA MINING AND KNOWLEDGE DISCOVERY, 2017, 31 (02) : 371 - 399
  • [27] Multivariate Outlier Detection for Forest Fire Data Aggregation Accuracy
    Alkhatib, Ahmad A. A.
    Abed-Al, Qusai
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 31 (02): : 1071 - 1087
  • [28] Pointwise data depth for univariate and multivariate functional outlier detection
    Jimenez-Varon, Cristian F.
    Harrou, Fouzi
    Sun, Ying
    ENVIRONMETRICS, 2024, 35 (05)
  • [29] Spatial Functional Outlier Detection in Multivariate Spatial Functional Data
    Ali, Nur Ftihah Mohd
    Yunus, Rossita Mohamad
    Mohamed, Ibrahim
    Othman, Faridah
    SAINS MALAYSIANA, 2024, 53 (06): : 1463 - 1476
  • [30] Comparison of local outlier detection techniques in spatial multivariate data
    Marie Ernst
    Gentiane Haesbroeck
    Data Mining and Knowledge Discovery, 2017, 31 : 371 - 399