Promoted photoelectrocatalytic degradation of BPA with peroxymonosulfate on a MnFe2O4 modified carbon paper cathode

被引:76
|
作者
Zhang, Mingming [1 ,2 ]
Gong, Yan [1 ]
Ma, Ning [3 ]
Zhao, Xu [1 ]
机构
[1] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Key Lab Drinking Water Sci & Technol, Beijing 100085, Peoples R China
[2] Hebei Univ Technol, Sch Civil & Transportat, Tianjin 300401, Peoples R China
[3] Beijing Water Sci & Technol Inst, Beijing Key Lab Water Environm & Ecol Technol Riv, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
Photoelectrocatalysis; Peroxymonosulfate; MnFe2O4; Bisphenol A; BISPHENOL-A; PHOTOCATALYTIC DEGRADATION; ORGANIC POLLUTANTS; REACTION PATHWAYS; SULFATE; OXIDATION; PRODUCTS; TOXICITY; KINETICS; REMOVAL;
D O I
10.1016/j.cej.2020.125088
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The combination of photoelectrocatalytic (PEC) and sulfate radical (SO4 center dot-)-based advanced oxidation technology (SR-AOP) has been regarded as a promising technology for efficient removal of pollutants by in-situ generated reactive radicals in the field of environmental remediation. Herein, a novel PEC/SR-AOP system was constructed by employing a BiVO4 as photoanode and a MnFe2O4 modified carbon fiber paper (MnFe2O4/CFP) as cathode. The introduction of MnFe2O4 greatly promotes the peroxymonosulfate (PMS) activation of CFP cathode, and the PEC process accelerates the PMS activation of MnFe2O4 for the high-active SO4 center dot- production. As a result, the BiVO4-MnFe2O4/CFP system exhibited remarkably enhanced photoelectrocatalytic performances toward Bisphenol A (BPA) degradation. Nearly 100% of BPA can be degraded after 90 min irradiation under the optimal condition of 1.0 V applied bias and 1 mM PMS addition. The apparent rate constant of BPA degradation over the BiVO4-MnFe2O4/CFP PEC/PMS system is achieved to 0.0596 min(-1). Radical scavenger experiments and electron spin resonance confirmed that the generated center dot OH and SO4 center dot- showed the responsible for BPA degradation during PEC reaction. The results of XPS and LSV tests indicated the favorable redox reaction between MnFe2O4/CFP and PMS, which results in the generation of high active SO4 center dot-. This work provided a promising way to synthesize other novel PEC systems with excellent photoelectrocatalytic performance for environmental pollutants removal.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Peroxymonosulfate activation using MnFe2O4 modified biochar for organic pollutants degradation: Performance and mechanisms
    Chen, Xue-Li
    Li, Haitao
    Lai, LanHai
    Zhang, YueXing
    Chen, Yonglin
    Li, XiaoKang
    Liu, Bin
    Wang, HuiJuan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 308
  • [2] Degradation of ciprofloxacin by magnetic CuS/MnFe2O4 catalysts efficiently activated peroxymonosulfate
    Feng, Li
    Liu, Yanyan
    Shan, Yuxue
    Yang, Shuao
    Wu, Lanting
    Shi, Tianyu
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2024, 161
  • [3] Heterogeneous degradation of Orange II with peroxymonosulfate activated by ordered mesoporous MnFe2O4
    Deng, Jing
    Feng, ShanFang
    Ma, Xiaoyan
    Tan, Chaoqun
    Wang, Hongyu
    Zhou, Shiqing
    Zhang, Tuqiao
    Li, Jun
    SEPARATION AND PURIFICATION TECHNOLOGY, 2016, 167 : 181 - 189
  • [4] Peroxymonosulfate activation by α-MnO2/MnFe2O4 for norfloxacin degradation: Efficiency and mechanism
    Xu, Lv Si
    Sun, Xiao Bo
    Hong, Jun-ming
    Zhang, Qian
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2021, 153
  • [5] The promoted Fenton degradation of norfloxacin by a S-ZnO modified MnFe2O4 with micro-acidic environment
    Pan, Ting
    Wang, Danni
    Song, Yanyu
    Liu, Yongdi
    Nghiem, Long D.
    Duan, Jun
    Che, Chengdan
    Sun, Xianbo
    Cai, Zhengqing
    CHEMICAL ENGINEERING JOURNAL, 2025, 506
  • [6] Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4 and MnFe2O4 as a heterogeneous catalyst of peroxymonosulfate
    Tan, Chaoqun
    Gao, Naiyun
    Fu, Dafang
    Deng, Jing
    Deng, Lin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 175 : 47 - 57
  • [7] Reduction of MnFe2O4 without and with carbon
    T. Hashizume
    K. Terayama
    T. Shimazaki
    H. Itoh
    Y. Okuno
    Journal of Thermal Analysis and Calorimetry, 2002, 69 (3) : 1045 - 1050
  • [8] Regeneration of granular activated carbon adsorbent by peroxymonosulfate activation with MnO2/MnFe2O4
    Liu, Juntong
    Sun, Ruoyu
    Wu, Yinsu
    Xing, Shengtao
    JOURNAL OF WATER PROCESS ENGINEERING, 2023, 56
  • [9] Magnetic MnFe2O4 activated peroxymonosulfate processes for degradation of bisphenol A: Performance, mechanism and application feasibility
    Deng, Jing
    Xu, Mengyuan
    Qiu, Chungen
    Chen, Ya
    Ma, Xiaoyan
    Gao, Naiyun
    Li, Xueyan
    APPLIED SURFACE SCIENCE, 2018, 459 : 138 - 147
  • [10] Efficient degradation of Enrofloxacin with novel magnetic MnFe2O4/NiS2 composite as an activator of peroxymonosulfate
    Feng, Dan
    Li, Xiangchen
    Cao, Shihu
    Zheng, Shugang
    Yin, Yaqi
    Song, Chunjin
    Gao, Yawen
    Bate, Nasen
    Shang, Jiangwei
    Cheng, Xiuwen
    Chemical Engineering Journal, 2024, 500