Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures

被引:70
|
作者
Yu, Yiling [1 ]
Cao, Linyou [1 ,2 ]
机构
[1] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA
来源
OPTICS EXPRESS | 2012年 / 20卷 / 13期
关键词
DEVICES;
D O I
10.1364/OE.20.013847
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present an intuitive, simple theoretical model, coupled leaky mode theory (CLMT), to analyze the light absorption of 2D, 1D, and 0D semiconductor nanostructures. This model correlates the light absorption of nanostructures to the optical coupling between incident light and leaky modes of the nanostructure. Unlike conventional methods such as Mie theory that requests specific physical features of nanostructures to evaluate the absorption, the CLMT model provides an unprecedented capability to analyze the absorption using eigen values of the leaky modes. Because the eigenvalue shows very mild dependence on the physical features of nanostructures, we can generally apply one set of eigenvalues calculated using a real, constant refractive index to calculations for the absorption of various nanostructures with different sizes, different materials, and wavelength-dependent complex refractive index. This CLMT model is general, simple, yet reasonably accurate, and offers new intuitive physical insights that the light absorption of nanostructures is governed by the coupling efficiency between incident light and leaky modes of the structure. (C) 2012 Optical Society of America
引用
收藏
页码:13847 / 13856
页数:10
相关论文
共 50 条
  • [21] 0D, 1D, and 2D Boron Nitride Nanomaterials for Countermeasures in the Visible Spectral Range
    Dengler, Stefanie
    Eberle, Bernd
    TECHNOLOGIES FOR OPTICAL COUNTERMEASURES XIX, 2023, 12738
  • [22] A comparative study of superhydrophobicity of 0D/1D/2D thermally functionalized carbon nanomaterials
    Lim, Chang Sheng
    Von Lau, Ee
    Kee, Kok Eng
    Hung, Yew Mun
    CERAMICS INTERNATIONAL, 2021, 47 (21) : 30331 - 30342
  • [23] On the origin of the combinatorial complexity of the crystal structures with 0D, 1D, or 2D primary motifs
    Banaru, Daria A.
    Hornfeck, Wolfgang
    Aksenov, Sergey M.
    Banaru, Alexander M.
    CRYSTENGCOMM, 2023, 25 (14) : 2144 - 2158
  • [24] 0D, 1D, 2D molybdenum disulfide functionalized by 2D polymeric carbon nitride for photocatalytic water splitting
    Aleksandrzak, Malgorzata
    Baca, Martyna
    Pacia, Michal
    Wenelska, Karolina
    Zielinska, Beata
    Kalenczuk, Ryszard J.
    Mijowska, Ewa
    NANOTECHNOLOGY, 2021, 32 (35)
  • [25] Morphology engineering of MIL-88A-derived 0D/1D/2D nanocomposites toward wideband microwave absorption
    Mei, Jie
    Luo, Juhua
    Zhao, Tianyi
    Jiang, Shenyu
    Wu, Yuhan
    Dai, Ziyang
    Xie, Yu
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 226 : 65 - 75
  • [26] TDDFT-Based Spin-Orbit Couplings of 0D, 1D, and 2D Carbon Nanostructures: Static and Dynamical Effects
    de Carvalho, F. Franco
    Pignedoli, C. A.
    Tavernelli, I.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (18): : 10140 - 10152
  • [27] Redesign of protein nanocages: the way from 0D, 1D, 2D to 3D assembly
    Lv, Chenyan
    Zhang, Xiaorong
    Liu, Yu
    Zhang, Tuo
    Chen, Hai
    Zang, Jiachen
    Zheng, Bowen
    Zhao, Guanghua
    CHEMICAL SOCIETY REVIEWS, 2021, 50 (06) : 3957 - 3989
  • [28] Photoswitchable Conversion of 1D and 2D Nanostructures
    Liu Zhong-Fan
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (10) : 1929 - 1929
  • [29] Turning bulk materials into 0D, 1D and 2D metallic nanomaterials by selective aqueous corrosion
    Fang, Liang
    Feng, Jing Jing
    Shi, Xiaobin
    Si, Tingzhi
    Song, Yun
    Jia, Hong
    Li, Yongtao
    Li, Hai-Wen
    Zhang, Qingan
    CHEMICAL COMMUNICATIONS, 2019, 55 (70) : 10476 - 10479
  • [30] Photocatalytic deposition of noble metals on 0D, 1D, and 2D TiO2 structures: a review
    Veziroglu, Salih
    Shondo, Josiah
    Tjardts, Tim
    Sarwar, Tamim B.
    Suenbuel, Ayse
    Mishra, Yogendra Kumar
    Faupel, Franz
    Aktas, Oral Cenk
    NANOSCALE ADVANCES, 2024, 6 (24): : 6096 - 6108