Degenerate Regularization of Forward-Backward Parabolic Equations: The Regularized Problem

被引:29
|
作者
Smarrazzo, Flavia [1 ]
Tesei, Alberto [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
关键词
DIFFUSION EQUATION; DIRECTION;
D O I
10.1007/s00205-011-0470-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a quasilinear parabolic equation of forward-backward type in one space dimension, under assumptions on the nonlinearity which hold for a number of important mathematical models (for example, the one-dimensional Perona-Malik equation), using a degenerate pseudoparabolic regularization proposed in Barenblatt et al. (SIAM J Math Anal 24:1414-1439, 1993), which takes time delay effects into account. We prove existence and uniqueness of positive solutions of the regularized problem in a space of Radon measures. We also study qualitative properties of such solutions, in particular concerning their decomposition into an absolutely continuous part and a singular part with respect to the Lebesgue measure. In this respect, the existence of a family of viscous entropy inequalities plays an important role.
引用
收藏
页码:85 / 139
页数:55
相关论文
共 50 条
  • [11] Pseudo-parabolic regularization of forward-backward parabolic equations: Power-type nonlinearities
    Bertsch, Michiel
    Smarrazzo, Flavia
    Tesei, Alberto
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 712 : 51 - 80
  • [12] On some problems for forward-backward parabolic equations
    S. A. Tersenov
    Siberian Mathematical Journal, 2010, 51 : 338 - 345
  • [13] On some problems for forward-backward parabolic equations
    Tersenov, S. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (02) : 338 - 345
  • [14] ELLIPTIC APPROXIMATION OF FORWARD-BACKWARD PARABOLIC EQUATIONS
    Paronetto, Fabio
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (02) : 1017 - 1036
  • [15] KINETIC FORMULATION OF FORWARD-BACKWARD PARABOLIC EQUATIONS
    Kuznetsov, Ivan V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2016, 13 : 930 - 949
  • [16] The Riemann problem for a forward-backward parabolic equation
    Gilding, Brian H.
    Tesei, Alberto
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (06) : 291 - 311
  • [17] A non-smooth regularization of a forward-backward parabolic equation
    Bonetti, Elena
    Colli, Pierluigi
    Tomassetti, Giuseppe
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (04): : 641 - 661
  • [18] ON A CLASS OF FORWARD-BACKWARD PARABOLIC EQUATIONS: PROPERTIES OF SOLUTIONS
    Bertsch, Michiel
    Smarrazzo, Flavia
    Tesei, Alberto
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (03) : 2037 - 2060
  • [19] On a class of forward-backward parabolic equations: Existence of solutions
    Bertsch, Michiel
    Smarrazzo, Flavia
    Tesei, Alberto
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 : 46 - 87
  • [20] Nonuniqueness of solutions for a class of forward-backward parabolic equations
    Bertsch, Michiel
    Smarrazzo, Flavia
    Tesei, Alberto
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 137 : 190 - 212