Interior error estimates for nonconforming finite element methods of the Stokes equations

被引:0
|
作者
Liu, XB [1 ]
机构
[1] Clarkson Univ, Dept Math & Comp Sci, Potsdam, NY 13699 USA
关键词
interior error estimates; nonconforming element; Stokes equations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Interior error estimates are derived for nonconforming stable mixed finite element discretizations of the stationary Stokes equations. As an application, interior convergences of difference quotients of the finite element solution are obtained for the derivatives of the exact solution when the mesh satisfies some translation invariant condition. For the linear element, it is proved that the average of the gradients of the finite element solution at the midpoint of two interior adjacent triangles approximates the gradient of the exact solution quadratically.
引用
收藏
页码:475 / 494
页数:20
相关论文
共 50 条
  • [21] CONFORMING AND NONCONFORMING FINITE-ELEMENT METHODS FOR SOLVING STATIONARY STOKES EQUATIONS I
    CROUZEIX, M
    RAVIART, PA
    REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1973, 7 (DEC): : 33 - 75
  • [22] Error Estimates of Mixed Finite Element Methods for Time-Fractional Navier-Stokes Equations
    Li, Xiaocui
    Yang, Xiaoyuan
    Zhang, Yinghan
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (02) : 500 - 515
  • [23] MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES
    ARNOLD, DN
    BREZZI, F
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01): : 7 - 32
  • [24] Finite element solution of Navier Stokes equations adapted to a priori error estimates
    Department of Mathematics, Czech University of Technology, Karlovo Namesti 13, CZ-121 35 Praha 2, Czech Republic
    不详
    WSEAS Trans. Math., 2006, 1 (188-195):
  • [25] Error estimates for the finite element method of the chemotaxis-Navier-Stokes equations
    Li, Zhenzhen
    Xiao, Liuchao
    Li, Minghao
    Chen, Hongru
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (04) : 3039 - 3065
  • [26] Error estimates for the finite element method of the chemotaxis-Navier–Stokes equations
    Zhenzhen Li
    Liuchao Xiao
    Minghao Li
    Hongru Chen
    Journal of Applied Mathematics and Computing, 2023, 69 : 3039 - 3065
  • [27] ERROR-ESTIMATES FOR A MIXED FINITE-ELEMENT APPROXIMATION OF THE STOKES EQUATIONS
    VERFURTH, R
    RAIRO-ANALYSE NUMERIQUE-NUMERICAL ANALYSIS, 1984, 18 (02): : 175 - 182
  • [28] Error estimates for finite element discretizations of the instationary Navier-Stokes equations
    Vexler, Boris
    Wagner, Jakob
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (02) : 457 - 488
  • [29] LOCAL ERROR-ESTIMATES FOR FINITE-ELEMENT DISCRETIZATIONS OF THE STOKES EQUATIONS
    ARNOLD, DN
    LIU, XB
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1995, 29 (03): : 367 - 389
  • [30] A NONCONFORMING PRIMAL MIXED FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS
    Cho, Sungmin
    Park, Bun-Jar
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (06) : 1655 - 1668