Koszul duality for modules over Lie algebras

被引:0
|
作者
Maszczyk, T [1 ]
Weber, A [1 ]
机构
[1] Warsaw Univ, Inst Math, PL-02097 Warsaw, Poland
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a reductive Lie algebra over afield of characteristic zero. Suppose that D acts on a complex of vector spaces M-. by i(lambda) and L-lambda, which satisfy the same identities that contraction and Lie derivative do for differential forms. Out of this data one defines the cohomology of the invariants and the equivariant cohomology of M-.. We establish Koszul duality between them.
引用
收藏
页码:511 / 520
页数:10
相关论文
共 50 条
  • [41] Koszul differential graded algebras and modules
    He, J. -W.
    Wu, Q. -S.
    RING THEORY 2007, PROCEEDINGS, 2009, : 69 - +
  • [42] Koszul-like algebras and modules
    Lu, Jia-Feng
    MATHEMATICAL NOTES, 2013, 93 (3-4) : 431 - 450
  • [43] Lie conformal superalgebras and duality of modules over linearly compact Lie superalgebras
    Cantarini, Nicoletta
    Caselli, Fabrizio
    Kac, Victor
    ADVANCES IN MATHEMATICS, 2021, 378
  • [44] KOSZUL DUALITY FOR IWASAWA ALGEBRAS MODULO p
    Sorensen, Claus
    REPRESENTATION THEORY, 2020, 24 : 151 - 177
  • [45] SAYD Modules over Lie-Hopf Algebras
    Bahram Rangipour
    Serkan Sütlü
    Communications in Mathematical Physics, 2012, 316 : 199 - 236
  • [46] Lie Algebras Associated with Modules over Polynomial Rings
    Petravchuk, A. P.
    Sysak, K. Ya.
    UKRAINIAN MATHEMATICAL JOURNAL, 2018, 69 (09) : 1433 - 1444
  • [47] Weight Modules Over a Class of Graded Lie Algebras
    Xuewen Liu
    Xiangqian Guo
    Algebras and Representation Theory, 2014, 17 : 1235 - 1248
  • [48] A Class of Polynomial Modules over Map Lie Algebras
    Chen, Hongjia
    Dai, Han
    Liu, Xingpeng
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2024,
  • [49] Gradings on Modules Over Lie Algebras of E Types
    Draper, Cristina
    Elduque, Alberto
    Kochetov, Mikhail
    ALGEBRAS AND REPRESENTATION THEORY, 2017, 20 (05) : 1085 - 1107
  • [50] Lie Algebras Associated with Modules over Polynomial Rings
    A. P. Petravchuk
    K. Ya. Sysak
    Ukrainian Mathematical Journal, 2018, 69 : 1433 - 1444