Parametric linear arithmetic over ordered fields in Isabelle/HOL

被引:0
|
作者
Chaieb, Amine [1 ]
机构
[1] Tech Univ Munich, Inst Informat, D-8000 Munich, Germany
来源
INTELLIGENT COMPUTER MATHEMATICS, PROCEEDINGS | 2008年 / 5144卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We use higher-order logic to verify a quantifier elimination procedure for linear arithmetic over ordered fields, where the coefficients of variables are multivariate polynomials over another set of variables, we call parameters. The procedure generalizes Ferrante and Rackoff's algorithm for the non-parametric case. The formalization is based on axiomatic type classes and automatically carries over to e.g. the rational, real and non-standard real numbers. It is executable, can be applied to HOL formulae and performs well or) practical examples.
引用
收藏
页码:246 / 260
页数:15
相关论文
共 50 条
  • [21] Effective impedance over ordered fields
    Muranova, Anna
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (03)
  • [22] Convex polarities over ordered fields
    Stengle, Gilbert
    McEnerney, James
    Robson, Robert
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (04) : 370 - 379
  • [23] Arithmetic over function fields:: A cohomological approach
    Böckle, G
    Number Fields and Function Fields - Two Parallel Worlds, 2005, 239 : 1 - 38
  • [24] Arithmetic of hyperelliptic curves over local fields
    Dokchitser, Tim
    Dokchitser, Vladimir
    Maistret, Celine
    Morgan, Adam
    MATHEMATISCHE ANNALEN, 2023, 385 (3-4) : 1213 - 1322
  • [25] Squares in arithmetic progression over cubic fields
    Bremner, Andrew
    Siksek, Samir
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2016, 12 (05) : 1409 - 1414
  • [26] Squares in arithmetic progression over number fields
    Xarles, Xavier
    JOURNAL OF NUMBER THEORY, 2012, 132 (03) : 379 - 389
  • [27] Arithmetic of hyperelliptic curves over local fields
    Tim Dokchitser
    Vladimir Dokchitser
    Céline Maistret
    Adam Morgan
    Mathematische Annalen, 2023, 385 : 1213 - 1322
  • [28] Arithmetic Correlations Over Large Finite Fields
    Keating, Jonathan P.
    Roditty-Gershon, Edva
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (03) : 860 - 874
  • [29] ON GENERATORS OF ARITHMETIC GROUPS OVER FUNCTION FIELDS
    Papikian, Mihran
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (06) : 1573 - 1587
  • [30] On parametric extensions over number fields
    Legrand, Francois
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2018, 18 (02) : 551 - 563