Negative donors in bulk Si and Si/SiO2 quantum wells in a magnetic field

被引:3
|
作者
Inoue, Jun-ichi [1 ]
Chiba, Tomo [1 ]
Natori, Akiko [1 ]
Nakamura, Jun [1 ,2 ]
机构
[1] Univ Electrocommun, Dept Elect Engn, Tokyo 1828585, Japan
[2] Univ Tokyo, Inst Solid State Phys, Chiba 2778581, Japan
关键词
binding energy; electron traps; elemental semiconductors; ground states; Monte Carlo methods; semiconductor quantum wells; silicon; silicon compounds; spin-orbit interactions; D-CENTERS; UNIAXIAL-STRESS; STATES; SILICON; SEMICONDUCTORS; ENERGIES; ATOMS; ION;
D O I
10.1103/PhysRevB.79.035206
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The spin-singlet ground states of a D- ion in bulk Si and Si/SiO2 quantum wells have been investigated in the presence of a magnetic field, using a diffusion quantum Monte Carlo method. By neglecting the central-cell correction, the negative donor state can be assigned by the valley indexes of two trapped electrons. In the bulk Si, the ground-state energies of negative donors of both the intervalley and intravalley configurations split into two levels in a magnetic field along the z axis and the lowest-energy state becomes the intervalley configuration of the two electrons in the valleys with their longitudinal axes perpendicular to the magnetic field. The magnetic field increases the binding energy of a negative donor and the strongest enhancement is attained for the intravalley configuration of the two electrons in the valley with the longitudinal axis parallel to the magnetic field. In the quantum well with the interface within the x-y plane, the quantum confinement effect changes the lowest-energy state of a negative donor from the intervalley configuration in the bulk to the intravalley configuration for which the binding energy is increased most strongly by the magnetic field perpendicular to the well interface. The central-cell correction on the binding energy of a D- ion in a quantum well is also discussed.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Band Gap of Nanometer Thick Si/SiO2 Quantum Wells: Theory versus Experiment
    Lockwood, D. J.
    PHOTONICS NORTH 2008, 2008, 7099
  • [32] Second-harmonic spectroscopy of electronic structure of Si/SiO2 multiple quantum wells
    Dolgova, TV
    Avramenko, VG
    Nikulin, AA
    Marowsky, G
    Pudonin, AF
    Fedyanin, AA
    Aktsipetrov, OA
    APPLIED PHYSICS B-LASERS AND OPTICS, 2002, 74 (7-8): : 671 - 675
  • [33] Quasi-Two-Dimensional Electron–Hole Liquid in Si/SiO2 Quantum Wells
    A. A. Vasilchenko
    G. F. Kopytov
    Russian Physics Journal, 2018, 61 : 457 - 462
  • [34] Second-harmonic spectroscopy of electronic structure of Si/SiO2 multiple quantum wells
    T.V. Dolgova
    V.G. Avramenko
    A.A. Nikulin
    G. Marowsky
    A.F. Pudonin
    A.A. Fedyanin
    O.A. Aktsipetrov
    Applied Physics B, 2002, 74 : 671 - 675
  • [35] Visible luminescence from Si/SiO2 quantum wells and dots:: confinement and localization of excitons
    Kanemitsu, Y
    Fukunishi, Y
    Iiboshi, M
    Okamoto, S
    Kushida, T
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2000, 7 (3-4): : 456 - 460
  • [36] Structural and nonlinear-optical studies of ultrathin Si/SiO2 multiple quantum wells
    Lomov, Andrei A.
    Sutyrin, Arseniy G.
    Prokhorov, Denis Yu.
    Dolgova, Tatyana V.
    Fedyanin, Andrei A.
    Aktsipetrov, Oleg A.
    MICRO- AND NANOELECTRONICS 2005, 2006, 6260
  • [37] Photoluminescence from(Si/SiO2)n superlattices and their use as emitters in [SiO2/Si]n SiO2[Si/SiO2]m microcavities
    Pucker, G
    Bellutti, P
    Pavesi, L
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2001, 57 (10) : 2019 - 2028
  • [38] Nucleation kinetics of Si quantum dots on SiO2
    Nicotra, G. (giuseppe.nicotra@imm.cnr.it), 1600, American Institute of Physics Inc. (95):
  • [39] Semiclassical and Quantum Transport in Si/SiO2 Superlattices
    Rosini, M.
    Jacoboni, C.
    Ossicini, S.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2003, 2 (2-4) : 417 - 422
  • [40] Quantum confined luminescence in Si/SiO2 superlattices
    Lockwood, DJ
    Lu, ZH
    Baribeau, JM
    PHYSICAL REVIEW LETTERS, 1996, 76 (03) : 539 - 541